|
|
(75 medziľahlých úprav od rovnakého používateľa nie je zobrazených.) |
Riadok 1: |
Riadok 1: |
− | <nowiki>
| + | https://arxiv.org/pdf/1803.05316.pdf |
− | N4IgbgpgTgzglgewHYDkCuBbARtEAuEANQAYA6AVlLIDYACAIQgBcBDEAGhAGMEMAHFkgCeKFhgj4QAEWZQ44pEwRQOIPgBsWMDGzwAOAJwBmKtQN69xK8QCMxapwAKAZQCq+Yk7cAVAEwfOAAsIFiZcPAB2IJCwqG8EAHME9QgAE3wmKDQITg0tHSY4LgC1TW1QoviklPS8TOzOLFDAkqamQKrktIysnJAIJGgEoXwbABY9UmojS2tbGyN7PUbQ2JHIlaY1v1HN7aNW1eghbzHDrePvchKuQJYoHhZ1AFEkBLhBkpgETShHQQg6lGxCMnHE7QBzlYhWQ+AiURASDQXBS9yhFVheCMNjBLASBSK+GxnAAZmh4MgAEohLhKFRYsacBBwIF4BYGXw2SykXzECwRAwGMYI5nqKHKPESPDUcjkIzUKxMlkoCAADyY4qgktG2OIEV5njUmD4+D0jKN/AAViwuABrIlK9QAMTggNqvkdlLgCRK4Ke+FlYy5ehMESMERsCqMEzBzCemu1eF81E5YzGipAfvUKvVCYSUvIvjGvgsGYwH3C5miLDAQikcnUrJs5E47wSLHrLKbhoAjmhBExMJ3GyV8xh8L5sYWIpQInpfALBXKHCAx3mpTLlxmxzmNXTEws7PrtxAMABZCv0vQIlipMCCLhpYeszmcVJwMTIVLP4GcLj3LAhEGH88ENW57keF9qDTYxqFIGxk2bPRZRxbg7geBB433fMiQXahZj/dDIN3dd8E3eUM3AjCnk6GoegaEAAHcEAQVIsDQKBBnpOxSQ4pAbSlcZeM4gSAHUWNSABJJA+DQJhRg9EBbRZJAJ1JKAhHCQ1mNYsjo2MXwDFIMMbEXAwVx01JSLZXVj20iSSOwqVk1TdN7NYrg5NiYFULKaAAGEvPCXk3wgEllAgGBvLZc0PjJGAtM4GAuFdJBHyJM0IwiMhsSMchBXDWVOE0LBTUUkqdmlFsQAqg48DlYqWCwU4Sgq65QM4KAEDtZgSi6nqmCdbIXwQ8gFlIMYFRsQVDDTc1+ttZghsBWjujqXpCNPIonkcTRFF/EAEFVOB3xgDFVI6kBAiEVItQALwrVq0H4uQwgnLlyHwshfEnXxyCsH6V3UZ77jgMJrKMPCCJqkHXogRyJRwqqt0NcE7k+LEobLZh0YgCGsdRnGAQRrUkfIhVDUKVgkDgTAJ3ICJ01lUg8vy7L7CrEAqcEWmMGs8mM25mnMBJg9bINVsflqSMZjcyX1CspzRmmM1tyl0WkchiIvsNeB1EgbjIbsXl4MjA1iCLaq9YN6yZdV3WWQNjWpS1nWkpZIpMQFh31E9pB+dlCifb952dSPCXMxYpBxKgRb6QVMEo5AoTI+QABFfsoA05Xcj25hnlVf97zpEp708um8DTJLkRhJAC6L0JlHepKBEffyEEYsjOEgfbLrVDQIvjoHYbBiBk9yAZWBAydOCFkDDVu5lamoBFUkizIEE07jQuadF6RvWl+xLy7koQOSyIRGBW4gAAZLRwlQnAoAhB1uEEJBMUNLB1A7ulbgDZYIBT4PGCNvEA784CBBZI3ekyZQoJWfn1SKIQQGuCQD/HqtR6h9CgMgiCwRagAG0AC6nAawsGgd/KUJDZ5NRgGgjBi0iEgFwQlfB3gmqqG+L8ZwQgoqng4aVTgzEkBrziJw0hLDIpnweJFBh3UmH4EIYdZUNZVADCGCINRhEIKYWzNo7gPxNB8AStJLiu0ATyWKiPMIogwCqDRgCRwHdcCxghIMOxqgha808e7X2PBUAGISOrAx1toC+LULglKZ8YDiVEeEgxIixFOh/soGwES2ixFdDAdRXFhjrnoEdVQPBGwsBMRAAA8nJaAFjBhWJAPFRASBnGMVcVdG6XV8yBPsZwDiPMRYGKRCiFBLS2kaKgPmQoXA4liIiZoe8ESdD4gqFwUZKhoi+wGT0rmEBbgzISdszJ0Bsk7E6gopaw1TksPOYNS5Bw9jHMit4e5IAijw1CT8fyk82ncK+YoaA8Q+CCNUHkcoETTyrO1LnfILBvCuigP4NxEBlCj0WcwZFcNnhnn8g49FKKwhwugDYXFYR8UQEJQi1QqQ+HIH+DhN8NL/Z8FARIaF5R1xoLBjktlOgClFMkR/QpUAxFKP6HkrR9jJELWYHfZ6tw1rYNnrswI8jMH0T6OCDFo9VWKLwCSJ4CVGheWQDAAAEidNeF1lH9x/rgs8Ud1GqgHrgwgAxySOudRAM89xuX9CdbaiAABBfhXUTqMHUPUm1EV9lQHRLXEFUTEDkkcJ01hvq+CJpiTG+gxrVKcCjbggAUmgPgo91ngNpHAYuEAU27KTbEr8Yy8nMCKCmxIabclDBbdMxtUAc1bFhGQyt1bXhdqmTGj1AbnChD4l45VbaEgdqVXs3t/alB5orYUat3hlUTvzf6iKu05IIEnRFAA0mgOAfBoDhsjQe3BzhPnfPLawlBtwLHlFUK+/BzwMDFE6ngkBUhGUgEkQWtayiMAOu7m631OhYCqC0LEJet7VBJOgHGppqhLQlrLVwmdnEQXAyUKoW0l7r19sBPU35z7QO9K1MLccbIuR/XnKQYwep/oWw5PR/pfMlZshVnLEAfTGOh0xtraGNot2hAg5EutMTO0TO7XO/+kjF0fBFUmQBnksCEjZPmpAch5X0lBFIrgQhhn0kNPM3QehpoR1s9ZezHIMy2fE3bYTXAsgpSoROFcapMjSabgZv19QtMrkgMDPgg4YElGuovLpoxCx4R5LMA0NgPpBA6YkAYtshMZgS50gY4nXbQxKSkWkIXmy4gSHUkoEAvkjmY0ETTAx2ITPi4CXmAYuSmTggzQw1hFjaw2bzfLstCvdZFoF/GkmMyLwxjxLmgg443F4BmyK3x6RW2UhgcQ1nOBvOVpNw0byJv2yO4+UrBMrs1qKPaNkCI3nz3UhACAd1wjVQwFAJ0uCPtSkJqSuGcJDKUBBJDWYVgxjGG+3iuG1k/oUyRWS8TY0I6arJatLBG1IkfGimZ1ppUT46BgKAkogx2I/3dZdal3wLpGDM1fFlXxGL3CY4aOQbwSgDnkEcQ74DFB84uLGgTdg5hkKFwUWI2P1XQrqegRa634lIDOsfQ04UYB6zi5dDAaAI1wFeyAd8n5RH+TuNgRKmYihdWcY2Y9AvwqsPkpdFEyArf44Ch3G4wNieGmZSyBA3xmVW9abg5i6gSQlFYMKuAOTLroUgCGm4iZDQIANmqcCbxAeNSii6VUaRXB8FSLJ5LJkZgRkLPYIdUCICQAUEwePoADYUgugFxQchIr4FAKwj9Ohu8ifQec6WABfAD9CGM9bwKAZ6jC1q+DH1ImAd97wD9n8Pici/WEVJZGvofaqkxb8imeOMrIZ/791Qv8fABxU8TfB9z/dEfmA5vdH+mnw/jfh/x/iV0h/9fB+V+S+zgHsASe+j+m+4+N8NiUo5+EB3+S+J+7isBn+gBz+cK1MU+cBX+QBrC1+Us4BOBz+IB+s4Q2BaB4+pqOWSW/+F+8+z+pq02TG5Bl+z+kk6UtB8BuBx+8Oo8hBB+NgxBKUAwHBLB9B4+lINyy0Z+qBuqghuQXUqQo6EyQg/gnBRBChrEyhwwdUYho+mhSh4qZw6hB+xAi+GaWh4q7UehHg5hih2hQg1A/BuqZhBhrgk+mAxKJhLhdhrEK+LAXhNhoEvhqQO+6ggRsha08hkSrESBTwERABchIRcR6gahQRrhMRqQKRuhkRtQGRFhqQt+GAMACRdB+hmRRRMAaRuRthBhlRORiRa0+Rihr+1E4RzhTRIRrRkE1RjReRIRv+qQpRXBAxEkvRZRtRmRgxDRExwRBhJBfswxX+0RBRCxASMx8BzRfhMBSxAhIR0BL0o84xmx+xMBGxX+WxWRRMgwuxPhBhSBuMxxFxIRGBfGtxURLxYMfG5xphIR+BCs7x5RqxjsRKHRQJihVBiWAwgJkxBRkJxWSAPxdxmRjBmyGAMJcxmR7BEAGJlxzgwhaUOJYJowIR+JqUj4Txex8xBJj4SJHxBhkhA00huJI+rJSU0IceUy9+LeWGoWk8ne9+OgSITw1I3wHEj43Juw4Aug0RhQ0AFSjEgwQxA+9ilc843cugEwQBcpUACpSp1RqpwYGpowFgi+OpepaQORhpgCq+bIegZp8KFpqQxhze/mxpSY1ADp8pipaQ1h4A9M7pf0XpupPpqQThH+qpJYgZ9ptCWA9CsxrpbIz+MiEpOqa0iZZmtpRgZpyqopb6BCKpowBg7p005hmgEpBcnqtQiZkWugnpwivaMAOaLILuGZ7p2ZDZ8SsAgaw6sm1Z/pWI7ZR+emz8gQ7cz0rZA5qEtp0RCUWuTScK4ghZ+g8EyE1e0ppoq5/09ZXM8gNamgmk/ZqpkwH065tpJ5a5O5Tu0u4QQCgQygTAogS5jQUsrwTUdEeqBqfQ8Aa8TQUA7c/Aaaa0+q6ghqiICAhQJI20tcMAb5VCOODEZ0kAKAEFcAJIsF/E8Fcuq4FCSAa6Jq5qqQlq+AIFYFuC3468XUQg+FquJFX5rWa8AFGg6KtQpFfQ7Qp4UoQC18JUiGx606kA0ksQ94rIFM1gbJS+KZXeEZAYnUA+4ywwA+F0hoaAdFoFEAZZMKSlJQqln56li+omWBiIOlalCUi+tm2ll0ulbFi+oollKlplGlbi7+oAylvS6qi+Y49l7l602Qi+VEkE3lImjli+lkQVul2Ci+esfs4VIV1ihxb0H+blwVelZlbiuMsVqVTlu5mBFcrlJlWVnlBBSVBVNlfiBsmVZV7SUJF0+VVlcVV0TBlVX5i+x2JV9VhVKOIO7VDlnVQCNJKByV1lLVEl7ELI74bwkpoWcA8l4q3gXhhoClJwahi1c1dUq1miLUfcc17UG1Kh3g4Z/uZQOg81JQoKJ1K1PKsK61vGjGp1VlHhGAlUKlj1zyOlr1xhNm5C91X194z1jUf1N1NU31n1joP1YNl1Ki6gb1l0ooW1QONEC1zl0NkNWYMNCN0NoNq4AiSN2NT1kNY46NrYAiWNAVei4NaEb+KNNwRE5NQNZNNEWNlkFNzNkNzNQNzNWN0VASFN3NyA/1QCoB/NQNfNSA8N8VoMBKuNwMCV5KkNMtkt5KQNCtcM4tmY1x5KuNjigwAt2tStvoGtat3imAFNxt+N0eXxd1QNZtatwSCsFNdtqQAtjtRNq4UsatYScQuNntAtPtItIJcQWNRWuWYtuNwdXSAt4dAwrtUdYtQdTBFNwQaJkdCdQNSdvMatbyFNWdkNWdQNWdWNmOqtWtvBBKkNyU5JmtXwA1vtNdQN0qtyK0uNDd0hAtLddythOZ/8MlSYR2zh1koAnkWck8UpfRHlvSF+9AWgRQDhA+Q9uCvcqEY9vl2ViRYRc9HEC9LuS9sxkVE9jCj6vwG9w9i9+9X+e9sh3qtwFY9+89I9oWy9F9iRMgUUPm8aH+d9p9NRK9BlF+h9aIfCYQzB3Am999O98BT9F+jJi0jd1NH9oDX9j9vQv9jC0DFyK0ORn929Z9B+kDjCd8zU1RWDo9u9yDODtoBDMNg9CD2D39eDCilDLpIDJ9LuKlpDfl5DU9Iu2Sx9W9JDEDZDshXDWSTyRDND/D59gjiRwjjyMAVDzDfDD97Dq9k9/OJyTDxDVlyjKDCifeug1DLDEjuDUjF+ejFKYjhjSjAjHDshLg7g8Dlj4DkjNjiRdjlUBjijbD1jKjjCv6xQDjijTjxjLjF+SBWqiVHjYD5DCqJjjCYTWO8KERmjQTuq9Ddo8Tqt8KFjgT0TCFPjCiwG9OvDUTdDsTBTjKzgIeuCxTiD2jvSfAi6t4EAopUlO63dkTtT3jBlDTWoa8rw7wOtyqNTtDSDLjPTTT/9cQQzATJToz2VYUUFNJQgeZ+CwzuEuT49/VldzwJIiz5JyzgG7TCj99Xjzj8z4qOzezIhBzbCICazWjXTDyGklzRQ+zKzdzMzvcpzB+NlElCUWwHwCQ3J0AreUp/JPD0+ElnusAYQpS9Ig9vAxRA+SGXU9AuCLAto7QXUaACQLQH+/JWiS5BAKLCAaLIQmLgQ2LuLqg/ERLIAwaG8H85Y/46gDA6LFLVLLQ8C/j9LtAgQOLEAtAFhVCGAtAjEYMgQtAHFUrwQygQgtACAJItA0L/CcLtAV8AkUrWoUWyrMACrSAMrgrBs+YCrSrOAgLtAWAXUi0SApAtA3qi0yrTAfLZS16Br4r7QMrcetAJajTa8dr3gUCer3rLA+rgrhQ4gPr4za87AyraU6L8AbwtAQgMitABa50tADGJrgEtA5AtAN83ogQzrAAmigjAKQMUrJsEtnAQDwPtr6nM2+HHnkCIO9qkPQsXqXllbiKqFKXW8xWEKxfRYYlFAPlmGRHMJO2dhwWJVO11XwdKFOxkWvPqvrkwO3KOx/uO4u0uxmG1bO5O/O4lQe1YK1bUOAq/aS+y1i2fNS0EEwBgOoJJOe3WxgAAPoktksYs3s4tcuGITmTGSSUjOCzWZCEtcVAcgecC0sQf/IwuAi/C0CUi3j3C0D4nvxtJrzJSSCBuCsVIGy2qpC0DvAkiN7JtnxisSuGtSvKofw/zDBSsIC0CnQ8AGzqsx7BsGtnyxDqvXyWvyvkgWvSuQd2vPA2iSvu5xveYhBznUfpu1yZuCDZvys2D5uFslsoIVt/hVtyuSCvsNvKNNtXwHkqhpAdsl6JVsV/hB6TnbszAnt7scFjCQxLtHuCTkBQ6nuhSrsRobu2en4ZQOfTtSjOfmwS7q3A4LtISTtnuSCQeqBFuPvPt6eItvvxfWcAfBFb43ID46k2BoOTkwc4fwq0CqcFdUqRQ8u4e0AUqldIc3K0D/gGtBY6tKBoccdxvUcXjqC2jyuiQsBCCxvsTOtNcfzOt7REfIAKtYCWi7JkcetQLNfBDquAN35advxhDVvrDXIDQOIsC9tWNnNGotmOVGctumfttF4WdShWcjuTlk6ugKwBirUDPOTVQsDQAnpsjkCxcEB5flf3tJfnv9Rvv/c5cZdfMSUN3/DPz34PduhKViBcXOC14Ky0AWKFDc6GZgdPlcXw9Pfcs4dBtCuaCY8JCNe8BtB6vSvODPQADkervTH4tcsbggRHTXQrXUYQtItAggKbgwcbP5grJIXUor0rIv3oJ0FPaPirvHAk63/4m3unBA0P9wjee3B3/0GzK9Z3Jnbb5nXbt3PAm7oAKtUXh7OVfGwI4X274u4l3nLAa7fnA+ZviVdvgsltU+7vGN1v9vry57+P6QgPT7wP3UAgz8b7gfxSZ8kPhmr3iPdL/TFYtAnKkaHe4HkgAw8fhPBAuHCUFP2AyfvON5UAlHnrJfnXobASG8jYaQmbNICnbX0nsmnPCAskoFTSMroQlHjYjX9wGk5HaAjH1HUUPqCvOnNbO3MDMP6vPbAZpTDEp053+vV3hvw7xv93QtF0XG1gbnvvhosd9Mcwi+K7jvvnNnA+otz3Nvpdgk4Xh/SYO/GRJ0mfbwj0wfyXKvYfavb7Wf7//7sfcBJ9wT5cVA0n3alLSyKBoc5uTSX1AS1x6SAPuXUCrth1z7BB8+TwH+IxFoBO402WgeVqwEWiKt0KvPURLQAm6As9W3HU1rzwfZB4qmkUdVkxwhDOsU2Q/VIMgDp7Os7gkAYfsxCzjysmo1AihKX1YSckHwEAcfkr0n6q9YeGvZLNr0VTG5m2evMzqv0s7r8L+H+T2hOAt5tVFg4XLyo/2P4O8neWg0ADoKTB6COCBg3fnjSP5+8X+xLYAR/1D5cBw+TAD9i4IAGsMJKxffnAPluhVoUC8ApHpICCGQAaWYQggIGnUC6Z4UuCWgJ2EiE58QAgbb1nwBcRQAyQrLdFlVlL4c9BwnEPloWwAC0S1EnjCjjZtdpWUGKKGm12avNJ4OA4aGK0FYc8+cr3KQRAC26ICpcAQxQbjiX6qDLunbDQepXHxSVHAGGXZF+GRb9CRcHgCgFdXwClDxcd2VYQhD94b9L+AdE7HOyhpwgthFvIulF0nAxdTB5/E3oLVILcRpgBwuypEGOE39Iubvc4SYP97hC5AKQq6A+xD59CI2/ON9hENZQ+DO67JH1APjfa8gIiRXGIeoGZShs/krADiDNSM7UwnOLMeXMwHjyoR9UlaTECACoI2gPgo8WgO3DeC4J2w8aUkNJiaSf92kJImmG9EmHikiSBAbEl+mkRsi1CRI6ggMC4TQh78mQsPESAXhhQBgCUXQS3DbYBhfuIAaEbYAS5/CGRo/KAG+0VHEo/w4jE+HwHWCLV70wFYdh3CVKndlBxnAbhdwN7jC0qCoxYLCOiEgAp6IkYVAz3a73AqU4gwkgGHYzmg8gdSePBrjpGEj/I9wQYL7EEBIdIoXo9KLSIJFIAGR/4TiN1kEBcixSsiLwnyJqppipKvI1Ej1ghHq8P8Ior7IpBXaSiQuxZbirKOlDyi329o5UUD0kBqiNRDY7UZY11h6iGshoodhMMOihkzRwwy0SvzGE3cWqnAN9umAdF0t/IKAfNsihpi+pToGIqUBEFICAJ/ROIqUviPfogAU0WgGmJGN/SlpqmcY2uAyIzQHiPwG6VhFJUzEHFFaOYnkZICKKCjQgworIaaBXDljVcq41CFfBrExlPhBAScUqNcHNiY8GoqccUh1Gdj9R+6KsmaJNFGi+xQ41tmoNHENU32/0acVxTvgTdBWnID6J6NH7eiVyxIUoJYlxFnjeSIAM9GDC5xB5yRygTIVqBpENJgxCY89spEyAfAg8T4jMcV1yrjhWRsiXkWsUHRAIhRA+EsYbDLESjfxowUyDKLWhASnBConCY2P+EEAWx2EsCccy+Ytx4JfqRCd237GmizJaEq0eoLHH6UJx2UXCZIHoA3xyRLaEiSuM3JFRKJAY7cZxMkD2owAYMKbrwlETQVQRO4+keeygyBT10Akx8JmO6J6I4pEAXkQ8QBBviixoAWSaMEmjecKxYcFSdLGf7ns32DkrSaqMgmlT9JmjOCd2NMm3dkJvYsClZJHHXcsJU0EAZIBAJyB3U6IiQZuRXCbiix1UCKcgAZHRSgpG6UaRdBAABTJpaHICO+EV6gjbxbIzMRJJvHcixJ/kjWhlI/GijmM4okkPlLZCGRCppoOsR1PAk6TKpV0gyawyMl1SA0TUvoI1MHEqDhxGEtqX1TfYLB7ASopKo6MIAIRIwaHPEGDBjxwA0R5ojyXgCMhmBsRRYxSNNIZE8TGJvqaaZIHom8SP4erduFAFYnnRkpmY/4kH0krPiCA/hPaTJM/ExRzQP4qUUmDOnVioiQBdSb9MWB3TEu2kqSfcA1F/S7pNUx6X3B7FISBxlkj6ehNGHfSqqv06YAYABmuVHRkhLXLQCLB6B3J/UtkDlDMxDT48yMziYmLDEpippfkggKGOTERiDWopGMStK2nxTJA7hK3qJIpI7TkC1M4sbTIXBmYGZzkOBCzOlg/cjsJUmWArK1G/CmxN0vmXLKMBhyYJHY4WQaPqnGjxZt3FqV9LX52SFRf0OwI5IIDPATEgeA1s8DkAl4aYmssiXYGWHeStx9UGiWNPPaXiYAh402fGMkD7jm5142gMeLgCnjyZgkggPCRDrJTUpAXQsftOCjGA8pik5jIpAAlREOywE7OWNH0ncyKp0cnOdVNgmJyEJz0sWRZLTmSzrJmEn6UhFzmdTKZNoWgLDkRQwytZVcsMIjPjwjTDZ3EhiXxIxlmy6J783GcxIJkSh2Jq0geSAHXouyUpkgKmePJpkHS0wPshSYzPGCXxr0a0CIHWLPmryVRAfSqegvDlCzuKxk8DC9KZCpzh26c6WZnNtFvtLA58wGXSydCSRaAhAXuQMzjwVyOCVcwwE/PwDmgUZUU9PJNNUCYyCAc09dAtNCnLTiZkgIeUljAV5imqUCz2QdNGjTyEFnMeedLGiLszqFGCyObzPVFULbAW8hOfgqekRQiF5klCc1KPmtSKF2VaEaZBoVKzE+AALVoCBo+woMaGcuPvk2AqAG4vOEWLxGvzJA10JkXwXrkzTiRKUZkYKwpGLoehRMsBetL2GyK3Z/oBRVlNpnFgjpJ08YEzmQXSw2ZJUzkBGB0U8zdJJS8+e2M8Y7yTJe8syW9IlkWipZ1o2yZQr6xxzaFXFNtBZkkneLK5vioMFwtCy8K9Oxsq2YIq/kWzwxXcm2aRNjH9yHZBAV8akvNm010lvMzKWoFpmxzV48Cl2PZnOn1Q0FLmMpevP0UdKjFNSkxSLOTl9jGlh85pcfJlnjjs5CwBsV0skDUBVO/kIQHVi8W2ylJE0XWQEufkRLxp/C2KREv8mQrgpi0sKZIoIBOzGMI8uLgstH5bLsp2mKsb7NGDwgjlmWOsZyEZxnKsFG895VcpOa1LCF+8yxX0DIWtKsJvIbWIrMRCOjA0bCwSL4ugjDKgl8Yi8VqE7mpjoVBADuS3O7n8Be5ds9MUsqJHyLFl4CymTAQ9mZKDpvIOBcdJnmThAE6iuEESr1BczMFEEjeQaspWGSblSc+pQ1JIWoTrFGcm0XYsjArxWVcIkANfgAAabi0RKLzSAfdOVQKnlTXOGngrz2oS6JeEo4ltzB5QgMJWEGYmUiElgC+2eyNmm39UVBAEghVQyXbKDpjOVCLiu0wrhdVtY4OZIDlnOrw5a8slRcuoAVr451yq+AQtFkNKbVVip5TYodWL5oRRYDqZ8ozWSQXApXP6AYFKH+rmM643lSGskBoyP5kyqNd/JxlMT8ZhMpNTKpTVpTPgqyt1QQWzVYqxoGq3JYGuLUGAiVPa0lcav0U/RJoZqh6Rat3lmLaV5ihlTZKwkede1TirilIE9Whj42AK+ZVyvXEgqqJ3CqdQQBnW4y51u47GejL/krqsMSSqRfKqAWuzhFu03dVkoXAqLBIZoAlZopKlvrz1Uc/RQRtwXby71dSh9S2oPmkK7V5CztROObBcgXVjoguXrCm7SR3wY6zLIBuGUvz+VL7cZdeMg20TplJsqMfAH/WIq3Vp4dNSAt3zobc1yk43Pst0FzyClF00tSBMY3ULyp1a/mWNB03VKqV5GmlVRrpW69PpdGtpY6ooh5y0hjvVyYUC42+KqxeskDZGvPF8KYpkkoRbNNhUGsQpS00vAhozVb9ZNG0lVTmvCAw581KmyuAsCOU7l2ZCwQ1bot0kpab1XwLsbcqtUpzqNtq9tfaus1dq/o0EvtfS2c2+jhlPC4JbW0E3CqPNIm+rdbOjGSaQtIAZFQWIVW8iVlmyiebAj1BYaiQ+oXDUSvIDQTrpeijUaVsy26im1dysCg8po2FarNWE3OcxrpbFtXFXyJzX1Mrm+AeQk6xrQ3OnU/z+JIqhdTBuXUAL4NCqkmTuu61SL+RG6DFf1ue7fi4tjOc0MWubBoLDFlao1URv5n/b61xmxtaYvIqPr3pK2xlT9IM0ba8JaAIQGECQBui94XGg7bHKO2jKCAE0qFcdpmkiK4V4i4LXdsdmPVZNrxFFQpvCAuchtWILycWtQWaaNJTGgHWlsqnw7SNxi8HTlso3Wr8tba5fkVqZWThOlH6rqRUj+gGCKAAAakjCFgPOGOiaNVtA2RIrxDW3zWKq7k9y+5yGlNZmraT67R5rw0Ea9ugVfZFg9OxnEgprHjBT1scwjVNu7WO7udDa7LZav515bzN5o4Xatp+l5QdN5Ws9GUjCBAQ0dMeZXXOGx21bI43m1ubuKJ0Bb4VEi9rZAse2hbbhkWrFZNEAQFqSwVsdTdrLrGB6nduk0vW7rB0e771kOszU+to2w7ZZ4we4XZsDSeqLw3mIPDwFLR/rYZCEdcQiDc11yCdRsy2UJou2iarZ4mwFe1oyYRrjdXUlJX1ot2mZMs9OyaEWqL1JaQ5k0NsRHPKXYLd9s22qXztr0C6fdz6k+bLM5BfQ7NUgCpK5JDy9775JgQbUGvjw1b+NkgPHT5q/lJ6xFQWlkWTqVWy1ZNnImnTtn9kFqYcnYmsSepZ32Lb9umi9dNsjCGb7pWW+bblvuWtr6VDel9T9KvWOK2VdLKQM8BQCSRnApXYgBMC40mBIwMer/bjv83CbCR/+wLQiva2DFZNKRbPbTI857LNVjMgvQSqKVlqiDZeyqRIcr3mrednus/d7vr0w6CDTegUJpPK2EAGYEQe1sgG6jHI6DE0QfaCt8lMHGR4aoA75qiWki41cSqkYkuAMgBEpGyhfZfNXwQHuFVu5TUIZC5r6A5eqhA6ZAMCaTJt6WtQ8fupXNrz9Shv3Y3teW/TxgVgOzeJEjzUHvlBhgwKhCH18bPN3+lgxdvYMp7Sd+uzMbwa3Vz6gD5uxReEGyjVRoDAoUbQEYSOSHo5mWNyDIdvVyGa9PupbQVpiMqG4j00bJa3q41jAqA1UIfXypyNgaztn8+ddBo/mwabtkk4o4vqz1br09lR1VdFoTheGTpk0QvXbuKllrBjMI5A0Dt+lChTjRm2Q9Xoo0KGcDguvA8oav1xGZQCOyQPeANbeoAQqOvVujr23sLRjCW9/SYamNmHrD4Ur+VYZiXxr4l1I27SseWUPaXDIACLe4fqgWB6dKWI5WpJKlvH2dB+6OfidB03GsDXuh4xfvwMvGs58R94wQFKHhgAADc2Bhy3z+lgJnkIpCH1mYcdSkGY6wZmnzHf512tiQieTXJL/Eyx5NSboyron4QOKuLUGFgNREjjWmqpfvvOX8z1TeCzo3ce6O4GLNLS/ozSebAfKJdMQkYxQCMPAbe6I+rzQIvyP+aADnBhw6UYz1ZiESfBg6Z9Dz1xafoVYn7UHKXm/S5QzRi5aGfaOYGId+px44aeeW2KStV6ukyABcl5LShk4S0zKEYNgmw1EJgU09tjWxLkAcJ+w4iZTPkIeDaG5fVUcgOCGTpYuxLaeqLBhnptSZyM3NujPmKejQukYbEZpP6h1D5plM44FoAmRShSugE4JFGOjYQTlcNXeBvO0E6sZMxxY6KalNrrMxnWumOsYrPomUwOSmed8rU126gz7Mgcy2dKl/RwjJmyI4oeh19HqT7SwGMmcDQVJBWpkIMOQFHWTmcpxka0z5NtO8mkxMyzXVMua3T62tDhh8SDnWPKr0TxYD7d4aJBKaftYhrTc+YJOanfpGFkkx0duOmaoj953s8aafOZZkz1+X2MgloArwzgP5mKBOtnOTHIpkgJuS3PzOirBV4q3XdKrvFuzZT7p6RQKLlNa9djM8z6LbqiJjA0FREi8yDO1NkbdTBFu800ofMvL+zQR5M/5H8jUWJzd8yueDn/O1ymLJ2urWPtAvzrJ9sy1rR5LT1wX3Thu8tJsai3xwZwWJrM34f0B1iwjmFvTaVI0vtmT98hmM5SeeNqWzKi+csL7BjzrALBPAc+Pi3T4ICdJcV+pK6vxLccUBPLdK3JHVZQITEvPRIdK3KC196hbPHAUhnXi5Wr0erMqxv2o6oh6hsvTAXaxfqlo41HFXueq3ezlg3g6geVlFaYApAxWD5QILGw4qCDEh8gVidTGdYfBLWqwIa2VbmtIhLcsAWNhzxwDMcQgqQPq90N6G46PY0V1QI2193EXHz35aSTWdfj56CVQZnYVuwC76B2YFvIwdkoOGWDHdU7E/mFDP7rtzBEXd/NeFc72DK4YXOwR9YVlfWWdp8c+JNsitgxI+KV6Ppl0NB0jIhmJCXtSJCGJXHRmN0na6r+zehSdWHHlnfGUyl93E6rFKzAFjaE2sbNVxIabnJ5FWdAtfUvkLxoEPc+AYre4D9dwQBtgg8rHgYKygyJDZJXfA1jDcbxDccrvN9Vt6BpiLMBwfV9VlgOgB7Xle1uKK/cBGCDDF+VJsKxdffEr7ZKolxmZvrt1AF7roAR2vgA4wHDXeG4b3nYNOFu9bBfvU/mYOuG224Z7tuwY7bIjO3sYpunUFDaXl42gDVa7/YdbfYR3QRcV81WjcBz+VlAkAC4KBw0hJXDEUANO0AddX4zc7oIkm0TyLM53mAcakNrQHLCpBSh8AT7ERy5tl9JWa8R8IoF45ttY27wHuE6yoEcVS+qwOQMN0ih2tRIdwWa+NxtC2hOOW17w7GzBhV2MWjAktDgOUCddxbZV9RaQKI6V3gkrEKq9zba6ZD2+LfNgaXxJApAcRTdjW5P3htHW9bTx1S7YvRO+mkLc5jy3YBTvXCzaysMG45zv6/3g4YBZjG5AuFeHfrzvD/N/cEwAONh2smBzcJirAOl28ongGXfTtw2Y7qDwu8jcTvDpk7ewSrFkDjxkExUOPR0ZkkIeXoEEUQulsIyGv+QiH1D1IdVzoexLGH0AXVrzwp5RQVbHwJPA+0ngy3nWAgPhKayVYLcuHTQPaI+CI7lhVQNA2SbG19lb327aQO1pJFms1WShuLcoWQK5tDcIKkrOa7EGKI0CB7cAIezVbIEb9r723W+zreOuGdTrlmvs2BSctYqasZtwSPkrgOf3/OrAVkDAeBuGUK47wg4Q/11DIPLhf164duyCcHCQnTGMJxbwidB3VTIACh7snYfloo7B1qK2+0yfeYqHbSBO7eqTuTF/wbVg1HlYzsZ86tVT0CjU+g6OjQxDTtDk0+U2oC0hy3Vp18VZYo8r0nD0NjIG8OlDggNYeVvo8tY5WOeUULsEK0ntcPZIaUSVhI7BhujfgJrVYIs6dyPgBbIt3CsxxNEc3vWRVrAao9SBKPSYAzZm8t3PvvYmAbooUmfANhNRDr8rDgYqVsfR3tb2ce+3GY7XWb0TDMenSmCOV3X/rAd+qH7bsHp0K4164G67cEjPXQHntq4ZOShehngbcLpjAi4OFIu8Vu7FB2Uj6dc2zjWthG5U9JcdPSnPOPB53Siox52wn2DOxC1AD45kB5WoSooRri3bw+ARSQAAB1UTTHFlG0IKs5BaBYrMe11bvzkC4AjraVgMEm5KtT7tAS0DIkGCDdpnzrRiDK7YFHPUdzrdFr7ASikBzXnDlgV62DZ6scM9Q6VjgAGY0w3gdra/CwAehJtl73fIqxx1jYGv0MpfPV93wNdxW0eHApu7z176y81XgwRiOFGehEdWkTwT1mVbVengTxgrYx8t24SocYAq3DAOt35fiS0ARFAYH1bGvLd8O0AQjvX3E6MDqBbXA1xvYG4wA8AtAYV8Wwo7C2C+wvVDnNbVcRtJXZVhhcdMBBd9WBqbX2MdM4cwAsBQnJjpGOVe89SOHD0Nj/CTZTvBWsvdN1KumfjVAWdrU1C4gNh+uu3NYQVmNyrvMA5OTqObudD1YML2gt7ItoP2Gv65UgpAYVyCnuAsA6oIAYV61bJGnQykzIIXEm0jZlXL34nV0IFKTZaAq7yISVvEtCCDBVZ8HhhcxHfcuteBvsJhEN12SO98+0byd5vGTeCCyBarteIAc75tdxAsbBhWIE54QBw+dfNrl3cFZNuxuoCRrujEfBSvqQI5doJ+5ADfutQxhf9yAE7dD9xWvfbt0KXlZZ4JSw/Ka2mives8H3PfVlux9ffSs3nUV+VrL3IrpuFOergYK+9HestpWg7l1nqzraCtm33mNCm8k4eDAJSZ0DSHayk+l8d3iQmT1p66jYC68Zn5Dzx0ps4AncgrILwP2s8GvcEgn0ayo/g/rvye8HtV5gNdBdI+PlFvVhI7o+0AMP8zsnB3B0/Lc2cBApju2HLJTIjnPV86MJ9E8sB2oEnqT5p/Y5q8FWJ7rh7G/lfHShHnXTPOjBNa4C1XYpdQPR9a/h57gRHGN4Fi6spGJH0rW0B/EYg1ATWBr7t+2ArBEdUgqIpNgO73Kdd2g3rZ6MENgD2e9HvALd0q1qE2daAIlNAFQgXtZIngh34nhzdl61C12p3hKG26kD3BbQ9rfnPV+07SDtuXSaABspOvqSOXJ6EI0y/dfvJYPG8EiY/YdVMhS0NMTEEiEbAn9/v3qRYeVr++xxAfiw1IYwVwSnuh+sz97Hy2K965bgSQ/7yT547rfz3vPLgH2ClVEcyrSrsMZQNfd+f6+whXgSWim6vpnWAACjmtWtJ7OIgAJSeeKOHPKCmQOoH3lsBUgM8Jw829KkVHszt1tvedZTciftoUofj9iC13r0KURZlGz9bD3cLOUiHi7kUjLT9r2NLiJD6cfqSS8scc320lyd6LmXiPn37aD9/lpL9ht/ys1ovmOHwLcymy5055aBpM2ckQICkFVnTSI3obKCtAD49KcOHSgNnMKmp7Ld3c09xR1Xdu9jd3ykr6VtrqPGSr+bNXQWxK6k5bYBwr3iAJ1bb6ZD4ACnMq+FE8gl+u/gb+8kNd2fhsO4U3mq1sEntCdggnVjROWGHsMACP5IK79a9jZBvnW41sRxw/7ZyBZOdQwawZ6Va+temjAlHRNWZtT/i/XD0W/Z7wfEckeLbb5wQExno/SRmIEKAvz6DqTgLJsuS5qiQfnYgABEygC4i6fVKxZCa5WvX7FyjfkXaVcJdo1w0M5AttYcOWboKyVe+3OR5Ec4vJxKV+9QoP7r+k3AayLQzHvP78+8Hrv682drBUh8Avfqx5McWePmAVuEAELZs+kYo7xPur0KDCRiVIgd5lWxAhw46AHwCrbn+TTLZ7IAj4JxAWsr9DXAcQjAjACIevPMP5JCjKFQKl8MaL6iu+mth/6HQGPryRKaUPo3KcW4+hqbVqIATWDQBDWhH4Jm2WIWYx+0JmSK2GiardrF2aAoKzOBNhsWZ2GtcOTyV2FdCISCsP8LB7k83wMIRMA2rhYQluZjr3y3gnxkp7GOtHD8CJAuAZG5leerKkjKQSbDUJ3OckIoH7O8rFBS4szrLgJWeWQCm5kCctq0hxCvAPO6kC/PIKx6uTHGTi82w/p1Y4AlFuhRv+S5p/6Y+Q1F76hqMauYagiAfsAEI+diLmYxKKPmdaR+nAAub34rqkKZLqLEksYboHgd04ZC3wi3z9sfPDZ7EcAXgayySOQh14F+y3NgGqg6Qd6wfAV8Fz78crfFBTS2Wfo2DZIw/E+758LQX3yS2JaNNaGsnVhQjFEdrEXh2+VArszQAdfMQFUCxwVoDwAvAjr402WfuQL3AWzlBgTkZjsegEgyAL0H6BbfF/6DB3jCzqLBQAfD6fYdiMSEQB/ulVQ/6tVCQZcUBRiTpAGmwdVwMhgBpm5WOabE6iCAreJySNc/JJCGcSW/lRyhswSC96y8ASH2CVW6eOcFYBTwDgFFBprCjqVC8rFgCGO8tlhxmOFPEgDn2RQEwCxs95Bj43+z/nNYi8vANRzgQQeAqHCBpfCp7ShDeNPYDu2rICBz2aUMDDX+mbA1xjUCsBaxLWcHKqyIcLXICA4hfkv0G8k3zKky446kjSEkhKIZME1g0YZSGuO2VNKFQAhHDH5VuqYcoBEcgUBGiZWRPN6yZ+3rGTgBeVHp1wYAq3B560Ao9iyAXuEFAh4M+3rEt4mirPIcExAXVr+IKOWQmcGZhCAFPbUcLQUNaXB2rglBbQvVoIKqhvAtKyGOHDnmzTSVjngEL+pfHTzXoWwEIB086rB4pUI5bM36CsEgRqGmhorGq4/wMahGjle1HBmE1uctpe4BIr9LhRMBXDlEHXoKjveAD8IXrtaVsoPpIC4hhgZ/D/OS8imFphcPrGFkhNYABFZhswS44kWGlN0x2+rwLxLSUPeBADxe3eDox2ge8EH7Is19HXibMrCFb4oRR2PGwycNaIoQRE0HthF9U6blkLeowpOoBuutwZhG14qpFVRqiZPAPQVojEZsxRQiMGPBx4tLh/hkRqpBfTPIejAxEweDVOfYsQUADYBSAvETHyTkAkeJGpICKEYAyRMNr3CgACkX1TcBCAH4yiR5ERfQsRgLAQz34mkVVQlQqkXxEaRWEUxGvKVwMZF6RNkVnJLUlzA5ENU81BZFyRrkX1RXAMjAKReRVVFcBX0i3AhHsRYkX1TyozLE8CFI/1qZGvKDdB5GZcVkRxF9USLhSg5EsUVnKpR8KEwwZR4VgBjxee8K2TDkvcu0Bpk1ZMVGjk5uONRlR+Eb/7dM13MCywATSOgCrWYLB3hsuiINAAkgDhC5Ef4mwSqDZCdfA4TdyjQkszD8m1uLjyO8qGUjQAfXsgAq2wSFGzD8f0AACkXIreCbMRyM8y7MgQkgEEAvkfKwvMY0SCEX+UnAmyMCarltGTOTkA8E2AK0bQAS+OgPI7/QcvutF5Mi+AszvMtwDfBBeMhJsGv42eERxHR+zPXy3M8qNTytB6vigEsMaATqy3BYQLeA0CgwOqCwxgIG9GbRaALszCMvUaACbBOaOCFEcB0SNFXMaUGeGLRy9m1wGgqMaBSC8CMSq65sZAOjE/0AGBRSXsMVon4wqiQqUIAAfLQDX4WoAHhcAerPQEwUdrIGiluk3DFg0ezAnxBbWbMTq7rojPGo5MxF9FxAkgBXNIRfReLLjF7RIANJDN8CUAuGCsZJMEHcORvkqwFctANISgx+ZF3gAYG0czFT86DNDQ5EmweLGlh8JO67J8oYgE6AMtAKUI1cRgPVwDQVscNAqxgjAJFOgygAUC7RXTu7F18PZIxGcUbdi1FPwVsdHGrAgLOHE2MFomTixxVXGK5XhxXuLj5smEO6En4WuJKAwAAAITZx2VBMGfY3Ll9w6xXTs6JIRZfrQCy6+Xh3gLuEsSval86EQj5SsnCPbHvRR2Ahh9RusfHFEcQlCCywsiHMhw++aHKNwcOEvrPHwcarDzHMS9bK9GjxOEatj34bsX3GJxMHsnHOsyHEgBT2dceZTKqk8V04Ax+YERyVMmrCkTD80FvPrbWmzFAhrwE6HfEFxgrDGg1cTUCUIahXKICDiOwQAaz9sKQIOwPROgItB6sGrHx64CD/sPFxku8VIgOxF9KkAYA45HBz5xkgCb7M+GAXqzLeffHEL64fZCo5FeXztfEMUEADRQEJBAC14c8z0N/HtCG2DAmsedCMqziOA4Go46GXMbzH8xZSFAhCxtACLGwC63OixjxoUfXiTwMAHmSTkbsdZFnxerN244AZnuL6U+rXpMjzWdoI0Gvuctlgwq2KYfVa/RtAIMBpAkIcoDSJn8Y7G4IpPE0gnRkgUwkgAAniVGSsLiRqFkJ2no4n3ueVv3G2+TPLkHBABbnQkNIcAKqDOAswqIgeJo5G4n54dfLTxxkEAJKFt28Se0DbhLCZGJkJcXp4mV+hVujD6sfHgtzUCx0qhyy8SFBwlZwJaLXC1xe8Y7E+RajCFFHxpYbVx5svkdkhtug8Z9j+xvMSsF4yawWuabSWCYIziAotkIA/RGLIklRJdfKagCs9rKeBys84hiz7OfMUjy5WZ8GjxZABrPT6Ss2gCxB92licV5lW6/vWGSs6fnjKOA7gI0kX0euAbiVMLKIfG6xYnAz57wC0vwiisFIpKHkUkblgJ6sBrm1xeh3PrxwsodiWMk2M2kbpF/xkgNPFuKx6BKpcA1ce6ITIQ8VvFwBEqhm4RJuEbshuJZ6O9jc2arpr7BJkgSo7duunnpj6ew/LilcAEKbIkJQ+IJPCBooiE8kQhbic2Ro8V5tAJMpigPOHqB9OGhwMCDALmgRJWUdADRgbieUaCsFKHqxBxZVqMaopQfv0k6G8es6ap6mCbInsQuzL04BOAziaCwp+0ZjHHS2YSS4BO7Tlejrh69mQK+y9KZsw4JcaC8ldOBbLwKlOHDjQkWsUMfslJCWvv67zOeiQeF4CDPglBtydyYIzORWMTiyzJBeEbFqy5AAAD0/0AvbyOw0cDHXMIqT6BhpflKyQj4QAA==
| + | An Invitation to Applied Category Theory |
− | </nowiki>
| |
| | | |
− | <nowiki>
| + | |
− | N4IgbgpgTgzglgewHYDkCuBbARtEAuEANQAYA6AVlLIDYACAIQgBcBDEAGhAGMEMAHFkgCeKFhgj4QAEWZQ44pEwRQOIPgBsWMDGzzVSAJgDMARgAsADgCcNqxZMGrAdiOcACgGUAqvmLvvACoGvpwAFhAsTLh4ZmERUVABCADmyeoQACb4TFBoEJwaWjpMcFwhaprakaVJqelZeDl5nFiRoeWtTKG1aZnZufkgEEjQyUL4JlZGpBYWRsQLi8Tk1BbkLZEJ4zEbTFtBHZvQQgFGh3vHAWbn++TlXKEsUDws6gCiSMlwI+UwCJpQNyCCDqfBTTjiLrAjysErIfDUWIgJBoLjpJ4w6rwvAmdYgHTJYqlCauEAAMzQ8GQACUIlwlCo8AY/CAEHBQXhyCYXAYnKQnFZiNR5sQTMQDJw2eoYcoWMkJDjhRYzAtJeyUBAAB5MGVQOUKoy81aqtSYPgIpwFM0AKxYXAA1vhSVKAGJwEENCWs9nUuDJcqQ174chrMzCmY2XF2ENIwPShn6klipzMllxjXa3WJpnUAzmFVp77ROxxFhgIRSOTqDm4zhfZIsSvsmssgCOaEETEwTer5XlGCd5CcZjMpCs1BMyucKxMpP7WflEyVBbrEAwGZ1CcXeENTmNLP7AFki4yLNROCwMmBBFxMj2OXnOBk4GJkBl7/hLdwnlghCMP3gLIPE8LwPimiKjtY5DGLY4LcI8zwIK8C4KiYy4msBiGvBuKFOkaFgYQhoE9PU/TNCAADuCAIBkWBoFAIyMmKnAUgxdqoUirFIOxADq1EZAAkkgfBoEwExeva7JIPgXpklAQjRCyVE0TJRgWE46kzJMRjUIsul4spGS4YqakrpR/E4VuBr4SahlcKJCQTKKnCVNAADCDnRMyT4QGSygQDAjk4ki3wUjAimcDAXDukgt4TNB45WKQI72IsaHniAmhYJ+XpZQcnImC5LBYKcTpfnl1yAUVJV3FVIBQAgDrMOUDVNUwLp5DW0GGmQTgCgYumLLynCtfazAdSCJF9HgZKvOFnAPGupSvG4miKE5kqanAz4wFi0l1aEQgZHqABeRblOoaDcXIUQyQNKqUGYJjPamYqWC5V1PHAUTGfYViph913fRAlmytuaGmSakKPD8O5hmYphUFYZjkOQiwphCzAwxAxkQ8qUNY8CoN6tuu77pwJSsEgcCYPgD1mFM/Jo4KSwZZTgg0xguPoSy7PU5gxPZmTBEHv8nq4jplBCoa1A2E9Z51mLxkquOJrJGLgvbn9AMgPA6iQIyphcgspBoXuArjpYGV6wbyvEKrLI29AmsKtrJp66U2I2Fye4zPMho2E45BWJF7Ke0g3OQ47Yc8KgWqbmD1l7iLELUUgfFQGNjJcqnyAAeYudIAAih2UDyfFBRrcwbyalwZaRMo5TXvZtNMl+MConCSA13X14MjJhW6wIt5uQgFEIpwkDrXVWoaP5jII4DX1RPnBTDKw+e899ggASyx1sg0aM+YFDUKUxPltJijIsnaXYN9fkU8KJCJ4jAw8QAAMlo0SDzgUBQhMBaggkDYhZFgdQY8GQPGDNbHgzxwjnxAMAuAoR2T3w2iADIAVoBiTqlAbBIFQheCQBApqDQmiDHweFQh00ADaABdC8140HgIVAwimxUYDENIWNBotD6oEPgQEYqqg/gAg8EIQKa5hHZU4FRJAWDEgiMYQIv49FbxcJIY1Xh+B+FSlEGAVQwxRgiDLKoTCoEDHmP+JoPg4UhKMVWsCMSS8bogzMZjKEIw3Bj1wJ47GViKbb35uuDxusY7IECSAdW6gMhRKdlAKJfB8HRQQJSPiCjnZhPkYol0EDlAmCiZ0BI7oYBGMYmMFC9AECamsdWFgdiIAAHlRLQCcSMFx5JKSICQD4iifiQCHX3vKVAYT6IcwFmElEaIIiAl8SoTgxioDyhKFwDJiiomaGvFEgkRIuB9IGeEdQnMolRAeOsrJhjdglICgcEa2jxqdTufVB57UnlnGudAUppVOClHcVc3W/w3LrwGWI4FihoBJD4DI1QhQqhRLXPsxMlcigsACO6KAwRPEQGUMDHZzAcVuLeIeNyqhISEuBui6AJgyUEtxVEKlmLVAZEkcgIEi4VEgOqVARRuihgVNMYYlRo1mBfyuotchAwKYQAeNwh5kryLkvpRAOVZD8CzXUPNEAdE9jIBgAACW2lg/a/DZ4QPwYeNORjNRz3wYQYYlJrW2ogIeJ4ZTFk2vNRAAAglIhq21GDqE6Wa/yFyoCYi7rClJiBKRuAaskKh7q1DRrSTAMN9AHLwg9c6gAUmgPgwMFlIPpHAPuEA40ypjWmt8AylkrNKHGlIibymjGYKUdNmbpIXhLWWj4rbVlhqdV6jwkR6JdpAGc0IjaE0BSTZOjturx231LZECAAQZWhEHdmr1q1RIICHf5AA0mgOAfBoCBuDZ6/yHggUgqLVQ2ZDwnFVFUA+whbwMBlBGoIh4UhWXSRUSG/BfD8RWsng6pNOhYCqC0AkA+F7VA5OgBGnpqhrT5sLaI0dDFYWXSUKoe0J6z1QAQ5FW9EKVAqPGSEsqGlqCUAMMYcUaVSTUc5nbB2nA2MC3jr9SYOtl1lpA8kytqaW3LLbV+idG6QAqITd8XleALALTQFgYkOJFlIDkItRkXoUlCBmQ/TK9cwSWBDFQBGzMbD2CRFslguNxRmTsy7GSxBLAYVyNFVhEwkTxz1PSRuGmhjalyIp0kkBLp8Dvv3A6R143DGDOYIwj1YKwWVGEOLKRhgccGhl4ZwwXNKf4xhGxMqYsF3xHKDp5QIDAt7HgL8qDMlIDoss8oRzOZ3QMFOP2KxrBy0Hh1zAOWTRDfXLxqy+A3Z7warDZiE7BBZ3uLwETMA/iG0ipJDA4gjN/PEgsFMMxuvkBFMQQ0IVbzGWZO5lkfzCsq1yyAP5bhSiOjwCHJ7t5d4sXwRAE6P8IRQBdL9/7AY6VuLpgRfQ52lgLDFB9pVbjjKIgJlEZVhWHAp3xODylKRegKsGMk74QUvT9OynVKoMAEHlBGHRCBjq6osr+PtR2fAEEKkdhRJ4A48HfH9HVTs8gjhGcF8UBIDmlgXkUELi4iQ8ekUaFKiozj0BjWW813aMWWR+TW2grXEI0BBrgN9zBL4MBvjco8bAEV8SlAaj46se6jN+SobgoCEDGLlGJ+5Me9xLrk5ZGz9kCA/hs5t/0/BVF1BknKKwHlcAykHSeJAP19xswsgQAbLUwFPgc6KoFN0mpMheD4BkVd8UXDED6meVY8xu2oIgJABQTBE+gANlSfaGV15yACvgUAVDn06D7yAK6PDpomAAL7fq4XqGjeBQCj/lRMKfqiv7XmH4vtVOIV9UKaeyDfWit8GB3wFQ8zAgzz5H4fnRTIT8wAAOJrlb1fsfno7+W5AkhDkC/r/TWP9PviFSS/TfG/f/VRDwCJfaH/V/GSO/D+T6CHYA3/BoSfafM/LxBUaApfW/afdFKmTrJAmAnA1Re/MWA/Ig1A8A9kA2cg7AygqhfVTLEZWgrfeggKfVEEAgrA1gu/ASOKQgugu/dAilW6AQrfYgO/DwaKYYfg7g0Au/akV5Cab/F/QQgoBqDIPtZZIQYIMQm/Sg5JGiLQsYM4PQ8fFfQwzQgVSqOQ6aCQ9QowgVWqWwhoew5NRwkxagFgm/NwywtfFgGlMw1wiwjQvfdQQIlw5fBwjIdA14CI1Qng6I2I9QXQyIwCEImiZI0wtI3wjQx/DAGAeIkA8w6I/ImAVIhInwjIjID/LCcI7wuw6o2o0CCo4o4I6IwAjIIo5A2Ajo/iVono9IvomibIyoxo6IiA45WOboig6oyY8OUYto3wao+AoGKIGYtQ9wjIVY5eCAAYog3ImiHYtxRYwYw4mIwmEYDY8Q6o9A7GfY7A84vAiZDAa4qo6I54kJU4g46o0g2JN4korYyYg2AElA6oxg/LJAUE5Y6Ijg45TAaEoYoE6Q2KCAREgwjQqQmKW8B4xI5E7EiAb4x46oxQtqZQxEiQifFfQKaoQKUoZ/dvVDILbvUpYfHQFEV4WkNRZ4XvS/QxILdfbfIJaAJpCiEYLo4ffkywL0QU6UlfEoEUsUzICo/kycZTcAXQNU+UjFUU8U0Y1U9UwUycbUxU8Umw8AGSDKQUgaE0qAXUzIZwi0pkPEa08gW0+0jILwvkmSQ03QbreUzhVVG/NvKI1RNJHkzRIgkMncSeXQIweUjdLkx9cIBoaMyYWMiYKwCwzQDRGuZ1VMp0q03QagFfJDWADNdkXBaM8LOM0smtWAb1HtVdAs/kmsp0E/NTf+UIUeK6Ksp0weI06k2dHpdFcQSUqbU2NYIUDMpTSctGEsoJcQJxBSFsicycecmciwOcoUFfF3MXaIXWUIZQJgUQMcloMWD4YqBXDVLVeALBVoKAUefgRNaaG8wYEBEoMkZaLuGAS81hAnSKMsEGBAT8387if8siQYBsb4DNRdA1I1BLGaOaShO8AKHIBAIQWCpQJARPN8sIbaWrFbdIKIBoPCidcIMcggN+diLKGDPdEdSAISBIa8DkQaRYKk6fcMjRcczkEaYfOtbYUAFnLjdVZC7M1FYfYSkfUSzVCAFfbjHnIS8oNAGS8KFfOzSS5S1SuStUFQqSlSpC2SlfOMTSuqAyihFffsUylkcygYFfCxL/aykSwytSuRfiJy6SxXPIakyAjygyt89ShA4GPy7S4yy4zA5ELSlynSidYJLgyKsy0KxWWJEK6Kny/WaIJSxKtKvLeLKAhKmypKwZTg1uLKwqnKz7CK/SoqxHYKy/aqiqqKAk1KgKji7VE9WJPnBkwBJ7figVAIQIlkAS/KIa/q0w0akxK4Grfq2qCa7QgIL0wPSoHQAa8oOFFa3Qpa1FUqMy2fTmVa3al4karjPazAHamy06jAKauqOzA6lkW6zaoqa8c6p6tFSqDPdkO63S4670dQF63666tMc/P6wazxV4H6uMf6yG961cK60G6JaRR6hGq68a2GwGhaIiL/L6+CT/cGpGhy8G1GnGuo9G8yGibGwyH6ymomymmG8JKY5AbGj2WOH65mxmomtmpAUmy6NYtdeGnm3Yn6gWtxf64WylOm6GYEbGyWkYCG8KqG+Wumvmfa+G5Ws6pGtWlG2POKs6ummJDIbG/Wn6o2omo2umhJJm6gyFJGi2jmq2xIOmoZPK7Gp2rLLmpG12kZf6z24YUmsbF2kqq6j2wO72kOumv5bGiOpGiOomiOiWnHBleG2qhlG2lE28JmtOtdVOgk/6kVN5SaeGvO5Qn6ou95ZYhM6Bb0pkX5bw4yUAeyMudeHqpYrymKkA+gLQUoYwwS7geifBaeQeFuiyrja/MI4fBu/u3BQewY4eyom9AEcevupuoLIeuykenhV1B4IsZ/Ce5e6eog2ekAmQE+TuJk+upege9e7Aw+6/eejESRKIRS3uxuy+sYgneS6/UksafOv6io3e1+1e7yq+h0L+x5SaUY/+qe4Bm/G+nhL+EqP+i+qBt+yCj+uB4qHa8+l+5BwBtu6/eB66rBye5Smeteyoju2XVky/SB5u0hoB8h4Xb5RB7B2hg+sh9uxh25CBpB1h6+9h6/Chm5GAQh5+4hsyuhvBnhQfXQIhve6B6aWB7RaRxlZhsR/evh+hkAzwHwahnh8RthzR6/bR/KWR6eGywYgK6Bj9MoXRlhleiRtB7RYQ5VReux9RrfRRh0ZxkWjFeImh+xgxyRpxhOtdDFVRuRlB1uxxh0P9ZnVxtR+R9+6B2J5ADwMPfBeJ5e8xwJ+SvgBNS8CALkritdGTWxhJyJw+vJvULBD4L4WW0p0xnBhxrjKpgpu+xIBp0RiJ3BlfXyL8tOoQJMwhTJ6ebyCpshpqmQiAN4Mkfp7EwZn9doMprJxJoqgSmZuZmQhZ6heBEZt3VZiq4pY4DZ0oeZoZ3Z5Zsxg51qocvYLqyU6ADvHqlk3k4ANq73WAKIepRkeu3gAo4fWDBqegfBFge0LoBqNAZIJZ0AbvUxSipBE+BAYFiIMF0ICFqF1QbieF31dCkBDAZadQBgEF1F9F9oY+GxkAb1WgUISFiAWgQw1hDAWgCib6UIWgLoOljl5QIQWgBAMkWgD5qRb52gai28dlvUCLAVmAXlpAdl8IWgA2eUXl/lnAPnWgLABqMaJAUgWgV1MaAVpgalhpM9WVllroOVhPWgfNfJrBHVgIVBaVy1lgGVzl+QOl616p/IAV2KEF+AT4WgIQcM2gIDPaWgWfJV38WgcgWgD+P0UIQ1gATVmRgFIHMVXXVnLgIB4G2yTVwafAT0KBEAgEyC4VL3L2iohBYFqSC2zY0AJVIuQoWhDz7JMr0Fh1h1+X4LYvbexRcbbfbZXywVmkNyYFHkCjZOBoRHbcl0qqnenaBrR0QO7fYt+QaARfQuRdBfBbSQxbCCYAwHUAEjXezYwAAH1AWkXiXt3IWyXuA0kzGV8BJqQPA+qcg4WFQQAn2X3OAsWP2mLHmvmARaBqRLwnhaApDgEBksEopJB7W6WmkDZzUMhaAvgyQW8A20lmXWW5XOWN0QEIExh2WEBaAdoeADYRW49HXZW0kEgRX351WeXul/WOXaAv2dW3g7Q2XkA6XvguBfWAocPg2r09Qu4w3BAI2eWTAY243E3ZlU2gEogM3tg72c3VA83Tc35NAi2S2S8y9RCyKeBx3L9W21Jl3FhO2FQEZUwO3sdF26rcQRYV3MFfIWAR2x2W3J2dwzx52LO6Yeoe3bORDUIQxYcV9tpJAv3VB42D2j3JAT3T3Ium3ezy77k2ph8FSoATBQG+zf3YOMVaApPsvmUAoKW4PaBGUCvgPXlaA65ZWcggLCWlBwPKPvXBPjx1B7QeWeIWAhB2B1XRIavgEQLaA1pkPkBeWsBrQytpWzWmtBOYAH6n95PvxFPuXJA86yUq3eGPGlc6JKztL83NOeuNQdOy39PG272jPQAqd3QUrORRq6mFQDA8QWBoB90cQ3TV3JAMusvXkov93D213WpT2fuiukuH2d9XkgR/5n8buPRJKxAP2PAG9YlaAnEShPhyk33TyP24eUryXYOHX6XNAMfkgaveBOhpWWOPAroAByaV6pl8LuPrwQZD2r+lhqM5Q1wQQNkYb1u8uluSXgQTuSP0bacn1Hvluj9iZbuuVbzNl5NqaHlvTb6to+cZ8iHaQtk7jIUtvThUAz5t4fMW0QsUGdzWpyGd1ts3pzod1zoNdz43oK03mzi3nEGz630Lr7qilHrIPdmLoHxqAQf+U9vHv3u95LpE4YR7hH+F2posWgYhb6LH+SHHyQaP86AnggOD8Kcn7ABP0XYXLD81/cqAVr512OdC6sTIMNukUTprvj+IOlwwkSTVHpOVyILD6sQbsuHlwNtAIj+byj2X9NtbggPO5XyDLb50g5ihQ77X4t3X3T8tw3q7+m8OYMD3kJy30bJgxC57pYQdlztzo3y/Tmzfq37f938zwZPf/aA/pz8LggDPn4f3wH9boPp4JgU9l/iQcHt3FfK9waix8P23qN7iyixalBwOZWHpEmlhZp8CAQA/dFnxAA586WrwCBBRFoAu5g2WgHlqwDGh8syQ0rVniN1Z5dVeWA3KXpEHNxvx2c0rP4B30Nb98SOyAWnoa0eCQBB+VEXvrQGKg0c+BcAMvlQgTxUxbwI/eXspwn5f8p+1bWsBr0GBa8tOOvPXivwu6Gc+yCSVzDOz2w7gbOVlZ0ofx8jDsHep/a7vbW0E39dBp2NWGuBkhoxH+a7JAf9wD4f8uAwfb/s4P/4pckE0uUvsPmOiloIq8AxHpIECGQBMWoQggN6nUD2Q1M0AfBLQCbARCUB9rS1nwHmQUhCWILALGX3Z5dgGI1LONgAFoBKxPVFN6ya4sdaBhrPpqc3XjYDOozLOluzyFyPcJBEAJTpIEL6y41OEjefsoMX6qDzuslTiuonLTIYZUb4AFn4OFy+AKAKKF9HgGKFm9fOywhwE5w0HD4tBJkALlKE/AbCt+dnU3kxiMHOcTBo7MwfTRoK7CbO+whrIcMv7HDUIpwxwWELkApDBkAPWLogNmGy5T24Qv/hHwh6RRKOw+U9syHiK5doh6gNnM63BSsB6IcAZlKIJvCWdSApIQoB0kTyDxZoJabECAEYJ2hvgwMWgKPE+D4IGwkaFiMumQA/Db+xI6mLdDGE8lAin7OKCyJxKSAISeVURLCGfwZCI8ToPeL5GGDhRXMkUM9NNE+5PY12EI0UC4Pf5UU48p7eUTShUx2NWc2wIasJ1fIXcx44pA7hpwX6nd9eRVU9vMChFRCQAHdNiDynp7NcngKImkqiWDBjgkQWI5gInm1y0j9oIANyE8BGDHJBAwHAKKiNdE0j8RSAekXXAYicFBAr6AKMUzZE8i3aiY7klyIIBwlOsoIyIAKPmTBgvQQ7MUZZw+xvxF+CIMLnKMtGKj6RNJKAKqJrEaixGWomrLqIbajDWQSpDsVqiUHHchhy/EYa5RACnsVQVo+Fm5BQAxscU1MJNDtDEEKg+Q6pT0SryCx4jI0BAONFoGpghiP0BaDJpGK7j0jkk24l8OOioTJjJAxxYKpyL2KSB8ifIvMcPkFHRAFY5wksQcMlEVilMVYyQKOIVFv86xKo/8eqK6ZXMh42o7dP5B7GDADReozsX2O05L8zuBvMSpwFPZoxxxH7L+KNzpZ5h1yzohcROVMAopsRPVdcUyRACHpvocgEBNK1HhQAMhInVDIeJ6T0jJIOQb4CHnTGXjs+OtAcLeN0IgB5iscR8auNAAvimIhoYwR+JxDcgvx00CwL+IIAYSAJXw1wcqKeCqjMJ5iPRq2JnjtijRcEmCQMP7Gmi1BRldCU4AVH1VrR9AD+GSLbSES0RE5VGKRK9HkTfRkgS1GAG+jjcJECib8kCIol0i125uXydhR4njC2RzRRyoJO8nhUxJ+YoUcFAyjFicKqEEiUPG/FihlJI46yaBOi5KjdYwEgqbpM1GSjIJwWfMkZO7FGjEJKgwcahMskjjdIWEyQBATkCOpDuRE2chlBXGJ48QIU6MWFMzx+Tx0w07yWNOwrgc/wz4OXkCIvHRSOpvleKQQDuLAgkpz4gsXJJFFkhZJDgMsVKIaBKTverUtSUVKAlaTT2bU8qS2MqltiapFbLsYaOekNSBxKE80bOCFA2ShK1owgA4DQjgc5Q30OPHAGRE9SXJ72UgLLHcmrjZIvo9iTRK4lJpJpBAaiZxLolkjlATEvaFFNZH3iyCa0kAP4S2mX5JJPmJEOlPFFMhHACklAmASf4jjvpt0wCWu3rGqiWZak/xvpJ1FPSyKxk+qQW0GHmShxMVU9hDEFDtSCAihNbLQAMCWBnJro93hiMxFVx4ZrE0KXF0DHxiJpXkggAGLjHBjZWXJcMRyLDLLSCAXgS6vjMzEgANpr/EqU+PJk7TeQpIamU9wGj0z4oeUiWcKClm1j2ZwEyWdzL0kPSDJ/M/UXVLenCyzJyEs0RVQhHGxpZIAN4HYmDyys3gcgMvNTCVn8ExQCw5XGRN4rkhEZa7E8TAB3F6yoxkgLcZXLPG0A9xQgxaUmMtmEi7+tsu8etMna5jxJagV2XBA9kTAHA3snEPGTOlJyxQhU74UHOunPcp5d0lZhBMeleoTJL0+Cb2NjlIThhzU4cRLJDALzbJ8LL+FwFoBTBoIec1CL1DVnOJBpmskaZIA4m0TuJ98yQBjOfn0ScZsoakRbIJkEAx6xM0mb3OSnRARw7s0URlJ8ztxjpn4X2Q5wXlszJAHM/ealFAk8zw5fM1ebVNelkV3pos3eeLIIiHy/p8LF0AJFoCEAhBdTBPJfKcgRg4ZieTiGXMkDhTxpqgNGfbOmn+S5pQUzuSmI7nEzsxtMYBdtJSkOA8QQ8nECWGynj5KCTM09kQoukzykFwExRWgrDnLyI5WC56YLJjlHdt5TU80XmCcDELkQ1ot4AAC1aA3qdsF9Ahkadepz0KgMuPVk4j759Iw6IyJvGlya5WYoQF4qiDYyKRnQvGbeLZHAkBkS0nkkJOSJkyJJO0swGM0kVJZR5DgX2cYoQXqTipyCjJaHIqmaLMF0E7BRvMUFbzGpn0xOZOEmC/SzF8LRtFwF560K5JyUQeANM8lRiYxOs42ewv1n+iulDc02S6PNlRLbwbIh8cTNilBgRFLslKUYGcAyTIFXnQeOWOlFwK/oSijSU7IbESz1l6i/JW/CqlAYSlkoaObgrKUfSE5ljEcXmCMA1ij5H7CcGSKEDJBc5kM5WU4sXhFyPJJc4afSNYWRTX560rhbKwCnzTy8YSyQNbJeKdyhJfBIETST7kUymQ1gBZTTO5DQKcpciuUTcqbFZKrp2ynFXkvukFKoJwGYpWvLwXxyLJe85kHuBqXQjKWTSpxYiAYXtKjx5cvUPXITGAqQAdcquY3P4DNy+F3IwOjCqvHO94V/I0RV5DOyoqnuakUeU4HSVV5WZeK2eQSpVVEql5ByleUUp0WnKLulKneV9OoDUAyp9y+8QAA1rFCiBqOIDLxAj5xUM5lR6NcXBh3Fa7TxdFCZHBTelRI71aSPJEzoqRLE3+aMoSnPCxVBACJUWgRUgLDYWUyRd1mtgwK9AcC01WVMQWaTtl6UTNWBP2Ykrqp2igWQaoQnnL8FRihWbdItXRqBIngArs9ysDFCmVJgGYKyrXHMKCAT8lGT0t8VUTkZWMhibjJ/kjK0SEa7GFGpAB/Fw+ca6VdnFnByqlwSIFZQ0CzITzGMYYDZdkuAkbrVV6CwtUcrXm6Kzl+i8pZcrQkjiQw1akhR+ykDWqAxPrexU6veWtq5g7aphR0rXbdq6Jvajcf2sxkh5sZjE7+aGtHUpjRVxMh2ZKudnxKUpiSr8MkvSwyKUCWKv8Veq3X4rtJ3nPZcSp1VaK9VJanBYavLVUqxZK+feZOHpXmL05HuVjoFJbV+x21Q0ztd+CNlnjf1lEw2UGIGVhihlLcjMWOoIDjKw1XckAAAqdmIqdppgBDRAppnMgvQK6qbHAq5BELA5Ki66biEo04btVfAQ5YZP1VEay1p6i5dSvFmzhr1tSj9sIgH7AoSgDGj7G0p2A+L2VLC4FRxoJE+Txps0wKQtOFXRrVpImoSSJKzQSb41dMKwIPEkVPRSQimtNRPPM0Yb1VnMnSFqvAl4bClZKgzccuNEizSNBC8jc9zHEgDJA3qeza6tvl0wPV2stjdyuc2cb+lIYwZURIhVWybZxM4TbOpmUyqZN+0xZUYAxjIbh56S8gEVqzVbLVRhW1LQWvS2krstx64jcZorWVLRQVG+FgmysW2an1Zsl4YYHbW4iWN36l+XVoJHvyUZQG4daBtbl/yp1RMwLdyIEWha51m/NKbJoNBGBl1qa3EHApW3TzNlyCqeVNt+C6bdVmWwjdlqNWGLE5Km1bdhLQBCAogSAB0VfCZUGAMRDmt1R2s/WuaIpIWjhZ5pmmgreFLWkAFCpozEzPiOYx7V1sNhJLXtg4V+KmqVUTzodv27dddJZ2Ly0twO/DaDqjmGbN5i2vLZWrmUw6OpTSZ7iKAoAABqNCNBBDAo7ko76qrQQArlVz3NfovlQ3KbkHiRN4SiwZBu37TLYN0QE7HtNkm3KMV4+MwOkpgiJb1NBK23dpq516bI5nY+bUZpNFC7E5yWVTTWqokNIogf4JHXHgV0aQ9tyu0DDjurl/r8d3CnzeCt11XiTMxMmNXEv7lwbVgi65FQzpyluF5FPuu3dmsbEhcnd027nRlrm2lqBdnu41ZUrDB3Kb1JW61ceD44h4eABaLbXxvEgzAvwjm5jVjqzYNbo99WmrSbN43NbE93cyNSnv11U7jdhsZ6FnrDAprvxC5WUX+PMDChC942iWfXsB0U5y9s2o9VXtKWC7a9VyiEWhF92N6CAUgJpI5LDyd7HF0wKvEruO0PyCA/y3Hb0tj0gqeFvm4ndeOZF3aCAcKtPUiuggvbetNMhmKzm/Frr19KkvMMaFZ2YbL9KBznWXpd3Fq+d4OkjefovUQiFZpihlVIDeAoABIHgArm5gsBMrpgaEcPe/r+VuaeVv+7zWCuANgbJAnRSdbEqN3p6Td6kLPcdlSWMzsVxB7fTkokOl6gd2BgjbgYpX4HIdF+7kFYB0l+7CAQ4JwLq2QCNQvkdB5KL3ox37aB9DIgNcAY4X+qSRgSoNZSNCWT7/RmNKZSAZJnJ659AhheHXnfGLKnoyyxnXAoFA6Sxt/2wI/vt5lH7yVQss/cocIPPQCwKcviNHmoMTgDDEWpjRHq/3D6PNwK9g0TocN8GXD3jbxZ1vn2fhlgS+gUKktQ0qS4jcONTUXolnmA6jzYnTXId51u6T9pkgxRUpUPIxIRxW6IUytHDlGvlq4kwy5q7UDqjtHC07YOq/nMSQtXB/zRlXvRXa7ZQC9w0is3VL76MqSvPXKMmCJLJDwcvo2EYwURGstih6Iz0cIP0ZRdBAa8LK1dTAhEd0rZHW8vzmjgF1oxtxUwc9X+LzDvqvtVYZ9VBLg19hpYzdvx4uHgt46Eox4eDCzAs90EBTamtOmIHWpQRtVfbtVF3GZDB+to5Xv52n6a9MRlqY0fuMgBih/WgAA24gGYWKBxc6tHCMZ21pIX5V+qmOozelsxwDUOpA2LG1jgm4SQFtHUxLEp/BpFX1A+xRb5ssW3KfFsyWXSktFJ/E+EaLXyGOjxJro2etM3kaJYlJ0rR8Y4gUAjDFW6un8ex1sLWDORwnQAfyM9yXDqY5gpKZ2l9ZhDdMwbR92U24rlTOJ/ebiv3UzaNT7RrVO7ur25aCD5JxjArMpMOSksxQ4wEMZhl4hHN4xtif8YCVAm/1IJwNcgHBMjqhTbIjY2KfHWbTXTKU6CD1tkkwRR5a++RTGdG3YmGjjZs4wev01g6rjpJm4+SZTDqGb9JMtwLQBcAmBih8u40z5n5D9SMdH6iYyAEO3cm+1vJz+cBoWPniizkKtrS4Y2PwmkVuYM3YsonComcpMo+RX2eOPXTzzap84yGaJN4Hrj568kw4AGiGmmkdLbkE9HIDNqJzwUfkGaeLkIzTDsY7jbVo4VcbdZoY+AF3sAMSrJ1QB6DZJrg1ezvDNM6TaIbgWMZVVfpho8+b3UaLgzh6yI3ou7OPm95gMkg9aPvzHJsEtAM1dcB/PmA21PxtlRmckCq72NPKzXbuMFU67ITUGydc6YSwVnogQcA8zTJWCW6UC1u+LfhIvM5rZL159s67rDOdGctccqM3vNCMpy3IbkWi+OaZPvKpY/575ema1mD7R96uyQOBeNmQXttfmkmbBZn0rHwDO0s1RIrp2chdjXp9E2ebUNyXVRWlzA7IZB13muzkZsk2pWMphw48PdKKDR1fap9rRcV5+D+2tFSF4rKA9KwNxu52I+BiQljlUGr6BQ+BCibAbBjQoitUEuV0gRoME7ohir1A6sDq2PoFpAlHLIQSK2Lb4tPg6gHlscj2DpBmWx5UIH1w5Y8sngPHfgMeU7Ctdikg10gd8FoAohrcsAPruzxwAkcIgGQXqx0K6Gf7orTwcYLPyVwQ6ezt5KVdTqdDCHUlMorYcZ087qRp2sNOmNZxnY7CRdA7Ywfb0uFr9W2j1gLgYKOMBd3rLML3hieSudJsLtufq6HyfidIn44EwTBzl3JyAqRwQxQIlfhai80bkQ0hajYT3QcKWX8CTGXy8Qis4bMAPrsDj9CroSBiQ18Mx3laFX0gZfAXsq0qunpmWE12aPgjtbhAeWnAulubkSGSSO+srCG5Tf67c9Eh8AF5XAH6adherIrTAdAF2tj9ob28cuMdc15KGzrgwXc26az0r7x8YBO66AH1pggbBN/E3gqAnA+dAufbb6WDbt4n81+Ft97FbZNA22EQNvI4UFxJCfWMT2NhPVDfxYw3g7wBhGwWqRswk72UASABcASvvs4uygBO8AYZUMS07jqkroTzpaZ3mAgSp1rQHxYZBih8Af7MhxyvF82WWCW8IoDo6L8+uXwKeAa2lYgUEEfAvYHIB1QBQdWPER4Ia2+hkCHQVHTa9Aa9ZD2dAY0aVvmmwHKBWuot0gSupKvIci76sGiBzb4CD8MhrfVdBh3ojYD0gXo6u2rYV5h3NbR1hQTqZM1izhLp4JfXsfspXC3eaEV61YPznMZgbvlOSQWGdvH9TBa/F+/uYC66CxQb992N/dqOB2mZcCLO/UY1vf9YHBdoEVHfKAx2kSc1mVLkATyZV+U2Pa0Zg744npwoRaBlYI0GtuRsHJD4rjB2z7ytyHedqh9AClZ8DyegUJW98BTz7t14fXHVPSx65t3Zm1d1h60DWi3hkO+LTUOzckl9cPZK9hu5kB1YCRB7JAooVC1KGlWcrvD9u61wSAFF2bmwbu60hIGlWNBp95TufZit9DAm19pbWRQNtiL3L49kkKPIQNm3bOF+WA09ZHw2ymQnt3fpCSdC+2zhLtgBx51YAcgvHAXBSqpHts+19opgednlMIdMOi0od6K6exSfEOBkqDgXD2mRtAJWrc0Kq0nYQHfginmqEp6lYnENJt4hLZHqehoeld5WAYip+ByqssPnWMgce8UPCBlgeWWjqW4N3FslBu+w8e0Kw5EixQ2Ws3A1g6IBBKtNgdoCZy7nEHld5WOgRaxkANFs3LWBVzAQo4yCyOSYdTMnixzJBH2mADo9kmkgNjFRorPLbZ2KXMcsKDrWtq+2pe6OkX9bF10o5yGrOHnjzqyptmv29uch/HLIMbHTDM6o5/bOIaydOyP4XDHel+MF6bu8dQuYgMLhdnC+5BJOzpdcCpzlfgeWPT2hLup8S+8F5OSgEQ9Im1XrENhQcl+F5s/mJzAC/dTFDQqfRC3B8AikgAADrCTiO7OZoXla9ad8KIA9zq0/hG5wB9WLHYYGN35b98y+1ocMiMF65DPJXnfFgds8R2GsQWxycKKQBNcsOoQhrLoJa0tboZirLHHAHU2pifAdW9+FgGdH9az3O+BVyjn1xYFllmWUrlgU/FR7bPhHGA9myq6WsQAKIfkK6Mh36SvBzWpAiN2uH3E8c6uTN/4GBwW5SIMAy3Xl0FrQAZBjUvV0a/KwQ7QAkOtfTjgJwEFNcWBS9gR3gFoCCuE2mHQW3n0F5gdFrEbkoOIBZ6lXyF+0kEEwP3tl9jk+0lhzAEwFqsmuIYxV3wLQ7MPnWHuMnuO7pZS8U3zc/ruyGfBOvaA+qXxAbB9dtugKS14bpCEE6zwyse0aVuQq6A7t42+9oa4bgyCkBBXsKJ4CwFMIgBBXLV0kTtAaRshpc/rcQPI4/J8Ct6jeNVloGLuog2WM6SICMDlkwfyFVEF90ay4HHJeEvDmVK51z5S8I3ECfxUGnGulWI3WCDg+3ya59vWOfApliJmD418muzdulvW4/Id2c8YrTvrSE7JdA33IAD93qEqg/uQArbgfiy277tv2SPLTjwJya7yBVs0rGjyh676EsWPT7ljvc/6s8spewGFN6J0lfDAn3Q7xrvK17d0tHg0rbNugM0d2g5A/THjtKxGAaJdo8kHVmJ7L6bvEhEntTw1CwGN4jPCH2jmTZwAu46WAX+SOyzdZPv8EvHka/I5g8ru+B0rCNxgPdAjIxW1Fmbthxo+ofmwlVseBp/lZc58BxHBsDmVWSsDure0fj4J5YC1QRPYn1TxRy/68sj3rDkYFgLXe8OBui17PDDCVY4CI3aidQH1zy/d9I8TwZDhG5GDahOrSR2Zyx3tAgIKI9QJViwPbfQVxSJHJEf6x7fRfFrlrme9THbw2fK7vAdd/y2qHNsFWrwVTINeKBfJXgujonmzal7VCR2QQ2ABACbdSAngEz11LLlq8KdOh6tkZNAGcPqcmZbL5Ac2a2WMv/kMP50SRdM2SgC01MbECiGrCDt/vgPoKAOb++ZxdWcwlARwXwTHuB+7PcKBZ8K8YA4PSQ/78T9lxPv23dodsM3OQ6kCFXgYigb6/y/RoAvVrDIbKwfSGsAAFItY1bLOvRAASnc+Yd2eX5UqwIKPJYCpAh4Fh1t5r41WQx5Y0q0PfG6E/7QxQvH9ADLtnpoo/TIXza17tBWcQXoXJw79H4K9wfeoUENrcGBMyy8mcU32k+UXZqEfBib3/aF9/I/wret+ykPoGN9LR9tl6C851oeUsw2okUIOkDlnDTQ32AjFFx9zyk2x4U3qnvK246j2ZHxdm7x+SvJesWOXFzOTxYgB82IA41xIbx1nQzXDv4QDqwgD4AZD4AonUgX5HsiF+IAHVyV/8EF7KAxWSgLnDyhIF7BlnM7jv555GD4te7DAXD5SEu8WtJb2ri1/zeVb7S8hK2OQOFCU/NslbUvD1gUyp6KuZ3+fmf6w+FvoD8nKHRHoWxecEBJpaPkkdiDGZQ/j2Uf4IzjxA/MsGAtdZMP3UsIrGKnYsExP3Rr8BVVNyadc7GriQYRuLa2Yd2/OlnK8q2Uj2Q5znX0TL9irAfw38xuWVjGgIAdHzOcmsZIBIEh/Jv3r9aAJpG78Q8Jj2I4c8eUFLdG/DDxs8+BFP3pQvoEMUpFovUgSIFmHTZxIRGOVpmg5yeVEgYg1WE+npB6IATg7gHgZL0E4UmHCl5Yy+MNCTQFpPa3f1VALv2/99oeSQ+cmZaAPHQobBl1dd/kcwPACvnPUwywszaP1zMbDfMzsMf5QmyQCXAvOzcCQlLuDJ4i7SZlRIRuMaX9Y/gaQiYBNXQwkLcDHbvkvBHjDRF0c8Of4BSAcAvgXUASvaVnyRJIZjmI5znUSEUCG/Hli/IoWQ1hwEWOJoETdSrCa2aFYhXgFv8SrXnjpZR/Sqwmsh/DqxwBqLYgXf99Ar/wx99KfoQxMvVawyBFLAoAOsCDEYYJ9U7A3UzI1OABc2j9lzc7QFNx0TwLod0hD4T3ta2HniNZpWBNANF6WTIUNw2vZhxY4sAzUDSCrXHClTdkOSNkMIvyFvD65ZnNLzk88go8lz4Wgqn3zQmJXf2H8y+FgHkAU2RPkkCa3WZmgAa+IgLbtZWAQF1wuBLb239sOZdyeBFnc3F7IDHPdCJBkAHoM/9WQdHyZJsmDRk99OTADSTQxg5EImCywBYNscvdK5UyNo/NgztMCbHOzoc6WBkP/097J1llZZ4QQA7xRBGrm7wIQ30SeDEQlDi/x2bWOHbAKrTPFOD5Wc4KEAig5VgR1yhHliwAdHAXkEdWHWOAudSgJgD64jyCgMH4tvbATtVBOYCBDwFQkQLL4FPBqCbx14Uex7cJWEED65eOS6F3cyePOm3dOqf1gWsKMIViA56uCLGxCvJPoPxCPfM6TpDAA8kP+wDECMM+dZg/LUlBEOZQALIGVctygBK3DyCDREA9YOlYM/S1ipw/PCj1a4MARbjc9aAfu3ZA6WcDzp8VAy1mW8DRFnhQ4QWQ1nCgMpaR3mQTg9MOoh7QIf39cx/F/00ALgvrmp9urNIHGtVQrgRY527Zh2jZhpEx1wDF/WgFp4z0PYCEBaeEVlsVWEIELK5L/KQKF4mWQjwwoE3Ur0E40wytxqDwPWOBPgAQ7b1nd2WIQDPR5Ha8Ei8gvHazTZJBSQBxDDA/oJIYbHDE2lCuwnlHgcrA6MLLAAIpDhmCb7fLVyYbfD4E4lXmARDi8+8aJntAr4BHwBZIPfklnoqEC32QjfkH1giBwoRtAlJL8TjndB+SK5RTd5kV1A5J1AF12+Bn8MiMbwiqesVJ466YtAbwsIiZisgpABPFydQAJiK4j6GU4GkYMIziKKoLnaiEy5eI5K2ngBIzCIkj8kTFCMAZI/iI4jyIoqlc4lAaxjEiNIqJlzF/4PnHgZGIhSIqosoVSPvY+yQSKKoAgcgGMjdI5iIqp1mWZgciKIi9QGoLIyPnkjxIiqlsjBGL5AQjrI3yPIBN6JrECjTIq5UWh8WOuHUBqkK4SCirlPOk8i5I9SMcjaQkJkZRRiBKIvVk6UJmgBzSbKKMoOyIQS6Ar4KsmKiuyIMmmg3mb9Di9LcHdyqjUyFCIUZ2GFCQZJHmHpHQAVrZ5gxsqGISmgAyQbug2YAhZkJAANQKAH2lkObukblZmeoVigTwjazN4pHRaAaRoAHr0NZkAJW3VghfQfme4AAUkTFLwVBk+R5IYaMvw1gm0WFweWE5gGZgQm329ZG+b+BS8g2I5ki9AoROAY4CuPaNoAxfHQCkc0YGX0OikmIYFmZzmB4A/gAvFQguiP8XPCmjZo26LfR4EV4IK8sBSBlQDJWBiKiBLwdm1m9DWdIAiwgY46PapZmQRjOjQAC6IzQwQ5Dn8jIvG6PmZDQ4jlnsmuVMHRiQQKjikRsYqXjRhluEFmBjgMY+nQoe6C6MtREhYoQAA+WgHvw9QIPC4BpWRgJ/IdWb1CLca+Lv3r48gsdE2tEWFUM7QGeRR0Jj9I5EAGjsuZQjBjoWBPwpYhIR6PCgFwulixIpmNhw2j+WbLloBlCWvh2ZFoJNF5iiY0unAYRoxPyViiwnkVdcE+AMQicH6WgGKFyuIwCq42oF2M6h9Y2ekEiXQZQGKA/YilgDia+Rsk4i1wBoS6i/4F2JTjNgPnATiJmOFDNiLouDnptEhFb2oNiAGNiQg3Q3Vlb95QGAAABCEuPoYQIiAE5d3ucmNGjbRCAFVCkPWgCl06NdCj4FlY5DhwE0I6wPZYREb9COiDYoQWfwLojOOQ5/2T5hBAgOEDm99wOWrkYgfojeL9CwOcWOxkc2QGIXi+YxbBXjRoteOsVMInOPrsQOJAB7CO4mKjBc+4xPxhj5QZDjSZ2IJuIidB+eCzfiV8VBCwRB0c6NGiyuMNHK5ioIoSkDvocKAW9wgWVlrZiKGvl+jQWJQPo4cBR/znisAGAAviBEReNnoMgDAB7IKMNOMkAjfJn1o5LWGuJij7IEnm19NHVX21YQE/CiwQsKbEE/iKWJr3Z4roMBJaEiKetnwTHWfli5wIUV9x0NRYiWKliGkVBFliGAqLFgEeYrayJiyI20MUAYAJMj7JV4h+ObxpWdtxwAjPUXwp9mvFZHVZlnRoKfcagyBnP9yOFjnxjh3EYEyAIQ5QDUSSEshnwQSeHpBLwbfG+MT8ePEqLZZ/Ez1ic9CvdTx8Sb3DpxwFdwhfzXBPE4GK/JNQDwCmEFEYJK7IqEggELwa+GngISIASUKfjB4kJKBD+EkMRrjYvEJLL98rGGBlYxWWbgEF9pMDil5doLgTgRcgFROQB24y+KJi/IzhkCT04yePK58uaNhpjSkJtxnj/sCOIlilg/kzXMOE7HGFshACGNBZskkAFyTkOfVFpYm45ZOnFQWBv0ljEeAr3Q9cgWVhrC2WbQGogOWMvhrjSBDf1g8VAtP3ok3AHwF6SDYunyNw0megXWSOOFQKvhZpHNyCVJQ4DHSDMBZ6IH4muPblR5nWOgXBCkkjRL3QdIyBP9jhk71D3QBVLgFbjHRZZFnjT4uAO10W5LxPoYcImVHWTD0Yti3sI3dX2t9wk+R3bdNPNTG09B+UlK4AEUg2PChCQdeG9QFEb5PBD1kislR4D+aAS5TtE+R3UDwOdJjpZuE9c2JSYqXKMyjzSYWJCYRkx5loBo40gVHAcUhHxmSdDKPVyN7TL2INi6IWZlac6nBp3NAUUilkpjJoskVqdAEi1PXDF7Uqw9l2U0hK5hfnc2KvEghcnl7JmHKnDHg1WVX0eS2WGlL59u+SxP3DcBFQPCga5d5NnpnIskAzR+cXhMkBNkwTme4AAejRhi7KtkbkBUGaM2Z5ohgEhYQEqkgnwgAA
| + | https://quantum.country/ |
− | </nowiki>
| + | https://michaelnielsen.org/blog/quantum-computing-for-the-determined/ |
| + | |
| + | Slovo "superpozícia" znamená lineárna kombinácia stavov. |
| + | |
| + | |
| + | |
| + | Ak máme hodnotu "a*k0 + b*k1", nevieme zistiť čísla "a" a "b". |
| + | Vieme však s pravdepodobnosťou "|a*a|" dostať hodnotu 0 (čím sa hodnota zmení na k0), a s pravdepodobnosťou "|b*b|" hodnotu 1 (čím sa hodnota zmení na k1). |
| + | |
| + | Kvantová brána je komplexná matica 2×2, ktorá zachováva jednotkovú dĺžku vektorov. |
| + | Aby to platilo, musí byť [[a b] [c d]] × [[a' c'][b' d']] = [[1 0] [0 1]]. |
| + | |
| + | rotácia = [[cos q -sin q] [sin q cos q]] |
| + | |
| + | |
| + | CNOT × [|+> |->] = [|-> |->] = ako je to možné? |
| + | |
| + | |
| + | Toffoli gate |
| + | t k00z = k00z |
| + | t k01z = k01z |
| + | t k10z = k10z |
| + | t k110 = k111 |
| + | t k111 = k110 |
| + | |
| + | Toffoli gate sa dá poskladať z CNOT a jednoqubitových brán, konkrétne z [[1 0][0 0.7+0.7i]] a jeho daggeru. |
| + | |
| + | |
| + | Uncomputation: |
| + | kvantové brány sú reverzibilné |
| + | dajú sa nimi simulovať klasické výpočty, ale potrebujeme pomocné bity, ktoré sa naplnia medzivýpočtami |
| + | ak chceme výpočet opakovať, potrebujeme pomocné bity vyčistiť |
| + | postup: |
| + | urobíme výpočet |
| + | pomocou CNOT skopírujeme výsledok výpočtu do výstupných bitov |
| + | revertneme výpočet |
| + | |
| + | Hľadanie: |
| + | začíname v stave 000... |
| + | aplikujeme H na každý vstupný qubit, dostaneme rovnomerne pokryté všetky možnosti |
| + | klasicky vypočítame, či je riešenie dobré a podľa toho nastavíme "solution bit" |
| + | skopírujeme "solution bit" a revertneme výpočet |
| + | |
| + | |
| + | Ak máme dva qubity v stave [a, b, c, d] a odmeriame prvý, |
| + | dostaneme 0 s pravdepodobnosťou |a|^2 + |b|^2 |
| + | druhý qubit je v stave [a / |a|^2 + |b|^2, b / |a|^2 + |b|^2] |
| + | dostaneme 1 s pravdepodobnosťou |c|^2 + |d|^2, |
| + | druhý qubit je v stave [c / |c|^2 + |d|^2, b / |c|^2 + |d|^2] |
| + | |
| + | Ak máme dva qubity v stave [a b c d] a odmeriame prvý v bázach e0 = [√½ √½] a e1 = [√½ -√½], |
| + | [1 0] = √½(e0 + e1) |
| + | [0 1] = √½(e0 - e1) |
| + | takže [a, b, c, d] = √½(a+c)[e0 0] + √½(b+d)[e0 1] + √½(a-c)[e1 0] + √½(b-d)[e1 1] |
| + | pravdepodobnosť e0 je (a+c)^2+(b+d)^2 /2 |
| + | |
| + | Ak máme bázy b0 = 00+11, b1 = 10+01, b2 = 00-11, b3 = 10-01 |
| + | 00 = b0+b2 |
| + | 01 = b1-b3 |
| + | 10 = b1+b3 |
| + | 11 = b0-b2 |
| + | |
| + | https://www.youtube.com/watch?v=NZqRUH1uSlE |
| + | vývoj kvantového systému v čase |
| + | |
| + | |
| + | |
| + | . |
| + | |
| + | |
| + | Pri modelovaní kvantového počítača potrebujeme vedieť amplitúdy všetkých možných stavov qubitov. |
| + | Počítač s N qubitmi teda reprezentuje vektor s 2^N komplexnými číslami. |
| + | Pri vektore nie je podstatné poradie čísel, je to skôr mapa z P(B) do C. |
| + | Tradične je poradie stavov pre jeden qubit ["q0=0", "q0=1"], pre dva qubity ["q0=0 q1=0", "q0=0 q1=1", "q0=1 q1=0", "q0=1 q1=1"] čiže [|00> |01> |10> |11>], atď. |
| + | |
| + | [1 0] = |0> = qubit je (klasicky) vypnutý |
| + | [0 1] = |1> = qubit je (klasicky) zapnutý |
| + | [a b] = a|0> + b|1> = qubit je v superpozícii; "a" a "b" sú komplexné čísla; "|a|^2 + |b|^2 = 1" |
| + | |
| + | Vektor "ket" je zvislý. |
| + | Vektor "bra" je vodorovný a komplexné hodnoty majú otočené znamienko pri imaginárnej časti; čiže "<x| = |x>†". |
| + | Kedže "x × x* = |x|^2", tak "<x|x> = <x| × |x> = | |x> |^2". |
| + | |
| + | Skrátené zápisy |
| + | [√½ √½] = |+> |
| + | [√½ -√½] = |-> |
| + | |
| + | |
| + | Fyzickú operáciu s qubitmi reprezentuje štvorcová matica komplexných čísel, mapa z P(B)×P(B) do C. |
| + | |
| + | × [p] |
| + | [q] |
| + | [a b] [ap+bq] |
| + | [c d] [cp+dq] |
| + | |
| + | Intuitívne, stĺpec v matici je východiskový stav, riadok v matici je cieľový stav. |
| + | Ak aplikujeme viac operácií, napríklad najprv A, potom B, nakoniec C, výsledok je: C(B(Ax)) = CBAx |
| + | |
| + | |
| + | Ak je prvý qubit [a b] a druhý [c d], spolu sú [ac ad bc bd]. |
| + | Čiže ak máme stav [a b c d], kde ad = bc, sú to dva nepreviazané qubity. |
| + | |
| + | Matica [[a b][c d]] aplikovaná na prvý alebo druhý z dvoch qubitov: |
| + | [a 0 b 0] [a b 0 0] |
| + | [0 a 0 b] [c d 0 0] |
| + | [c 0 d 0] [0 0 a b] |
| + | [0 c 0 d] [0 0 c d] |
| + | aplikovaná na prvý, druhý, alebo tretí z troch qubitov: |
| + | [a 0 0 0 b 0 0 0] [a 0 b 0 0 0 0 0] [a b 0 0 0 0 0 0] |
| + | [0 a 0 0 0 b 0 0] [0 a 0 b 0 0 0 0] [c d 0 0 0 0 0 0] |
| + | [0 0 a 0 0 0 b 0] [c 0 d 0 0 0 0 0] [0 0 a b 0 0 0 0] |
| + | [0 0 0 a 0 0 0 b] [0 c 0 d 0 0 0 0] [0 0 c d 0 0 0 0] |
| + | [c 0 0 0 d 0 0 0] [0 0 0 0 a 0 b 0] [0 0 0 0 a b 0 0] |
| + | [0 c 0 0 0 d 0 0] [0 0 0 0 0 a 0 b] [0 0 0 0 c d 0 0] |
| + | [0 0 c 0 0 0 d 0] [0 0 0 0 c 0 d 0] [0 0 0 0 0 0 a b] |
| + | [0 0 0 c 0 0 0 d] [0 0 0 0 0 c 0 d] [0 0 0 0 0 0 c d] |
| + | |
| + | Matica [[a b c d][e f g h][i j k l][m n o p]] aplikovaná v opačnom poradí: |
| + | [... |
| + | |
| + | |
| + | |
| + | . |
| + | |
| + | X[p q] = [q p] |
| + | X[1 0] = [0 1] čiže X|0> = |1> |
| + | X[0 1] = [1 0] čiže X|1> = |0> |
| + | |
| + | Y[p q] = [-qi pi] |
| + | Y[1 0] = [0 i] čiže Y|0> = i|1> |
| + | Y[0 1] = [-i 0] čiže Y|1> = -i|0> |
| + | |
| + | Z[p q] = [p -q] |
| + | Z[1 0] = [1 0] čiže Y|0> = |0> |
| + | Z[0 1] = [0 -1] čiže Y|1> = -|1> |
| + | |
| + | H[p q] = [p+q p-q]÷√2 |
| + | H[1 0] = [1 1]÷√2 čiže H|0> = √½|0> + √½|1> |
| + | H[0 1] = [1 -1]÷√2 čiže H|0> = √½|0> - √½|1> |
| + | |
| + | XX = I |
| + | YY = I |
| + | ZZ = I |
| + | HH = I |
| + | |
| + | |H[p q]|^2 = |√½[p+q p-q]|^2 = ½((p+q)^2 + (p-q))^2) = ½(pp + 2pq + qq + pp - 2pq + qq) = pp + qq |
| + | |
| + | . |
| + | H = [1 1] |
| + | [1 -1]÷√2 |
| + | |
| + | [√½ 0 √½ 0] [√½ √½ 0 0] |
| + | [ 0 √½ 0 √½] [√½ -√½ 0 0] |
| + | [√½ 0 -√½ 0] [ 0 0 √½ √½] |
| + | [ 0 √½ 0 -√½] [ 0 0 √½ -√½] |
| + | |
| + | . |
| + | |
| + | X = [0 1] |
| + | [1 0] |
| + | |
| + | [0 0 1 0] [0 1 0 0] |
| + | [0 0 0 1] [1 0 0 0] |
| + | [1 0 0 0] [0 0 0 1] |
| + | [0 1 0 0] [0 0 1 0] |
| + | |
| + | . |
| + | |
| + | Y = [0 -i] |
| + | [i 0] |
| + | |
| + | . |
| + | Z |
| + | [1 0] |
| + | [0 -1] |
| + | |
| + | [1 0 0 0] [1 0 0 0] |
| + | [0 1 0 0] [0 -1 0 0] |
| + | [0 0 -1 0] [0 0 1 0] |
| + | [0 0 0 -1] [0 0 0 -1] |
| + | |
| + | . |
| + | |
| + | CNOT - CN, NC |
| + | [1 0 0 0] [1 0 0 0] |
| + | [0 1 0 0] [0 0 0 1] |
| + | [0 0 0 1] [0 0 1 0] |
| + | [0 0 1 0] [0 1 0 0] |
| + | |
| + | Toffoli |
| + | [1 0 0 0 0 0 0 0] |
| + | [0 1 0 0 0 0 0 0] |
| + | [0 0 1 0 0 0 0 0] |
| + | [0 0 0 1 0 0 0 0] |
| + | [0 0 0 0 1 0 0 0] |
| + | [0 0 0 0 0 1 0 0] |
| + | [0 0 0 0 0 0 0 1] |
| + | [0 0 0 0 0 0 1 0] |
| + | |
| + | . |
| + | |
| + | |
| + | Superhusté kódovanie |
| + | https://www.youtube.com/watch?v=w5rCn593Dig |
| + | |
| + | Vytvoríme dva previazané qubity, jeden pošleme Alici, druhý Bobovi |
| + | 0--[H]--[C]- |
| + | 0-------[N]- |
| + | [1] [√½] [√½] |
| + | [0] [ 0] [ 0] |
| + | [0] [√½] [ 0] |
| + | [0] [ 0] [√½] |
| + | |
| + | Alica má dva klasické bity, a podľa ich hodnoty urobí so svojím qubitom nasledujúcu operáciu: 00 = I, 01 = X, 10 = Z, 11 = XZ (najprv Z, potom X), výsledok pošle Bobovi |
| + | 00 01 10 11 |
| + | [√½] [ 0] [ √½] [ 0] |
| + | [ 0] [√½] [ 0] [-√½] |
| + | [ 0] [√½] [ 0] [ √½] |
| + | [√½] [ 0] [-√½] [ 0] |
| + | |
| + | Bob má dva qubity 00+11, 10+01, 00-11, 10-01 (všetky štyri možnosti sú na seba kolmé), revertne pôvodné previazanie, a odmeria ich. |
| + | -----[C]--[H] |
| + | -----[N]----- |
| + | [√½] [√½] [1] = 00 |
| + | [ 0] [ 0] [0] |
| + | [ 0] [√½] [0] |
| + | [√½] [ 0] [0] |
| + | |
| + | [ 0] [ 0] [0] |
| + | [√½] [√½] [1] = 01 |
| + | [√½] [ 0] [0] |
| + | [ 0] [√½] [0] |
| + | |
| + | [ √½] [ √½] [0] |
| + | [ 0] [ 0] [0] |
| + | [ 0] [-√½] [1] = 10 |
| + | [-√½] [ 0] [0] |
| + | |
| + | [ 0] [ 0] [ 0] |
| + | [-√½] [-√½] [ 0] |
| + | [ √½] [ 0] [ 0] |
| + | [ 0] [ √½] [-1] = 11 |
| + | |
| + | . |
| + | |
| + | Alica má tajný qubit [a b]. |
| + | Vytvoríme dva previazané qubity [√½ 0 0 √½], jeden pošleme Alici, druhý Bobovi |
| + | [a√½ 0 0 a√½ b√½ 0 0 b√½] = a×000 + a×011 + b×100 + b×111 |
| + | |
| + | see: https://www.youtube.com/watch?v=3wZ35c3oYUE |
| + | |
| + | |
| + | CNOT zo source qubitu na previazaný, Hadamard na source qubit |
| + | odmeriame previazaný qubit; ak je 1, povieme adresátovi, nech na svojom qubite spraví X |
| + | odmeriame source qubit; ak je 1, povieme adresátovi, nech na svojom qubite spraví Z |
| + | teraz je adresátov qubit v rovnakom stave, ako bol source qubit na začiatku |
| + | aj keby niekto odpočúal poslané informácie, nič mu to nepovie |
| + | |
| + | |
| + | c/eJxM0sFuozoUxvGngV0jcwwkLFjklnAHFIjaEALdIGMbajCQgmkLTz-iGmlmaf31_eTFoUTxehgXVw616HXmIrvkBHTuGrZj2HvkwF7nHRGyqHnPR6I4K4j6W00HsP7uVnvbskpmItPBtu3sjQoTwNTYHyoOJiK6cAEBRgcDGYAtwDu8q1iFqoo5FbG4eTD2u49BtYDrQTNRVz-pb2M3zeWkCG13dOh06b4r9Zg0fNTA18D_N25PUfdPotfA__mvBj4duofkimvYV0PLew17fAkNCumSgWyDZljiJLfipl6i65egkK4U5GfZ_jQRZ2H2uoZtjlJ5hfR-vzGZSydI5H9vl9urxeTr_xdfdkkaiPNz-KDPgR00JytazCX2bnPsHedLkm-tK3FY0V-p2Nw8ixHt_CkHp33L3tHb3fzZ59mLuDQnuCQniNejFTXRFHSpublRkltRkuPYuy3R8iVIFq-btZnn5LjtV3YPxEWEK7mz-XyXc9Cj3Xq1X4qqpl14PZ-LYxQ2eyos7H0MHjNfkshJAnzCydhgpIE9ciZGTpWGPQ0s8PXHXBZ06Lq5F2opeE9KyZmrxplvSQpKlBj6QjD34BiA9NH9FFKQTjNROY-7qdWnuWRDR0TvkkmNRNKB8W_Fe139Obl54uMGgGU79gGM3wEAAP__quXX_AZZ |
| + | |
| + | . |
| + | |
| + | |
| + | Motivácia: |
| + | - každý mnohočlen N-tého stupňa má N koreňov |
| + | - 2D súradnice |
| + | - https://en.wikipedia.org/wiki/Cubic_equation#Cardano's_formula |
| + | - https://en.wikipedia.org/wiki/Steiner_inellipse |
| + | |
| + | Definujme i ako i*i=-1 a predpokladajme, že platie bežné pravidlá matematiky. |
| + | Nemôžeme sčítať hrušky s jablkami, preto sa a+bi nedá ďalej zjednodušiť. |
| + | a+bi + c+di = (a+c)+(b+d)i |
| + | a+bi - c-di = (a-c)+(b-d)i |
| + | a+bi * c+di = ac + adi + bci + bdii = (ac+bd)+(ad+bc)i |
| + | a+bi / c+di = (a+bi)(c-di) / (c+di)(c-di) = (ac+bd)+(bc-ad)i / cc+dd = (ac+bd)/(cc+dd)+(bc-ad)/(cc+dd)i |
| + | 1 / a+bi = a/(aa+bb) - b/(aa+bb)i |
| + | |
| + | geometrická interpretácia: zoom a otočenie - násobenie 2, delenie 2, násobenie i, delenie i = násobenie -i |
| + | absolútna hodnota |a+bi| = sqrt(aa+bb), |cis(u)| = 1, a+bi = r*cis(u) # u je nejednoznačné na pridanie násobku 360 |
| + | r*cis(u) * s*cis(v) = (r*s)*cis(u+v) |
| + | r*cis(u) / s*cis(v) = (r/s)*cis(u-v) |
| + | mimochodom, aj -i je odmocnina z -1; a celkovo každé číslo má dve druhé odmocniny |
| + | sqrt(r*cis(u)) = sqrt(r)*cis(u/2) alebo sqrt(r)*cis(pi + u/2) |
| + | sqrt(i) = cis(45) = +-sqrt(1/2)+-sqrt(1/2)i |
| + | skúška správnosti: (+-sqrt(1/2)+-sqrt(1/2)i)^2 = 1/2 -1/2 +2*1/2i = i |
| + | každé číslo má tri tretie odmocniny |
| + | sqrt(1) = 1 alebo +-cis(120) = -1/2 +-sqrt(3/4)i |
| + | skúška správnosti: (-1/2 +- sqrt(3/4)i)^3 = (1/4 - 3/4 -+sqrt(3/4)i) * (-1/2 +- sqrt(3/4)i) = 1/4 -+sqrt(3/4)/2i +-sqrt(3/4)/2i +3/4 = 1 |
| + | |
| + | vizualizácia: kladné čísla zelené, záporné červené, i modré, -i žlté; osi čierne |
| + | https://en.wikipedia.org/wiki/Domain_coloring |
| + | vizualizácia kvadratickej rovnice s 2 reálnymi, 1 reálnym, 2 komplexnými koreňmi |
| + | |
| + | umocňovanie na iné ako celé číslo nie je jednoznačne definované, keďže už odmocniny (mocniny na 1/N) sú nejednoznačné |
| + | reálna mocnina ako limita racionálnych mocnín... môžeme povedať akurát jej absolútnu hodnotu |
| + | |
| + | čo by to znamenalo "umocniť niečo na i"? pomôže nám Taylorov rad: |
| + | e^x = x^0/0! + x^1/1! + x^2/2! ... |
| + | cos(x) = 1 - x^2/2! + x^4/4! ... |
| + | sin(x) = x^1/1! - x^3/3! + x^5/5! ... |
| + | z čoho by vyplývalo e^ix=cis(x) |
| + | |
| + | ln(r*cis(u)) = ln(r)+ui # nejednoznačné, lebo k u možno pridať násobky 360 |
| + | ln(-1)=180i ale aj -180i |
| + | |
| + | Taylorov rad pre ln(1) diverguje ak |x-1|>1 |
| + | ln(x) = (x-1)^1/1 - (x-1)^2/2 + (x-1)^3/3 ... |
| + | a ešte aj keď konverguje, je citlivý na preusporiadanie prvkov |
| + | ln(1+i) = i - i^2/2 + i^3/3 ... = i + 1/2 - i/3 - 1/4 ... = (1/2 - 1/4 + 1/6 ...) + (1 - 1/3 + 1/5 ...)i |
| + | |
| + | a^x = e^ln(a)*x |
| + | ak a je kladné reálne, je to jednoznačné, ale inak nie |
| + | |
| + | Ak berieme aj celé komplexné čísla ako celé čísla, zmení sa nám definícia prvočísla, lebo napríklad 2 = (1+i)(1-i), 5 = (2+i)(2-i) |
| + | Násobenie zachováva absolútne hodnoty, takže stačí skúšať delitele s absolútnou hodnotou menšou ako odmocnina absolútnej hodnoty N |
| + | Súčin dvoch celých komplexných čísel je prirodzené číslo iba ak je to (a+bi)(a-bi)=aa+bb; keďže modulo 4 aa aj bb sú {0,1}, prvočísla dávajúce zvyšok 3 po delení |
| + | Neviem to dokázať, ale komplexné prvočísla sú buď typu 4k+3 alebo a+bi kde aa+bb je prvočíslo nie typu 4k+3. |
| + | |
| + | . |
| + | |
| + | |
| + | . |
https://arxiv.org/pdf/1803.05316.pdf
An Invitation to Applied Category Theory
https://quantum.country/
https://michaelnielsen.org/blog/quantum-computing-for-the-determined/
Slovo "superpozícia" znamená lineárna kombinácia stavov.
Ak máme hodnotu "a*k0 + b*k1", nevieme zistiť čísla "a" a "b".
Vieme však s pravdepodobnosťou "|a*a|" dostať hodnotu 0 (čím sa hodnota zmení na k0), a s pravdepodobnosťou "|b*b|" hodnotu 1 (čím sa hodnota zmení na k1).
Kvantová brána je komplexná matica 2×2, ktorá zachováva jednotkovú dĺžku vektorov.
Aby to platilo, musí byť [[a b] [c d]] × [[a' c'][b' d']] = [[1 0] [0 1]].
rotácia = [[cos q -sin q] [sin q cos q]]
CNOT × [|+> |->] = [|-> |->] = ako je to možné?
Toffoli gate
t k00z = k00z
t k01z = k01z
t k10z = k10z
t k110 = k111
t k111 = k110
Toffoli gate sa dá poskladať z CNOT a jednoqubitových brán, konkrétne z [[1 0][0 0.7+0.7i]] a jeho daggeru.
Uncomputation:
kvantové brány sú reverzibilné
dajú sa nimi simulovať klasické výpočty, ale potrebujeme pomocné bity, ktoré sa naplnia medzivýpočtami
ak chceme výpočet opakovať, potrebujeme pomocné bity vyčistiť
postup:
urobíme výpočet
pomocou CNOT skopírujeme výsledok výpočtu do výstupných bitov
revertneme výpočet
Hľadanie:
začíname v stave 000...
aplikujeme H na každý vstupný qubit, dostaneme rovnomerne pokryté všetky možnosti
klasicky vypočítame, či je riešenie dobré a podľa toho nastavíme "solution bit"
skopírujeme "solution bit" a revertneme výpočet
Ak máme dva qubity v stave [a, b, c, d] a odmeriame prvý,
dostaneme 0 s pravdepodobnosťou |a|^2 + |b|^2
druhý qubit je v stave [a / |a|^2 + |b|^2, b / |a|^2 + |b|^2]
dostaneme 1 s pravdepodobnosťou |c|^2 + |d|^2,
druhý qubit je v stave [c / |c|^2 + |d|^2, b / |c|^2 + |d|^2]
Ak máme dva qubity v stave [a b c d] a odmeriame prvý v bázach e0 = [√½ √½] a e1 = [√½ -√½],
[1 0] = √½(e0 + e1)
[0 1] = √½(e0 - e1)
takže [a, b, c, d] = √½(a+c)[e0 0] + √½(b+d)[e0 1] + √½(a-c)[e1 0] + √½(b-d)[e1 1]
pravdepodobnosť e0 je (a+c)^2+(b+d)^2 /2
Ak máme bázy b0 = 00+11, b1 = 10+01, b2 = 00-11, b3 = 10-01
00 = b0+b2
01 = b1-b3
10 = b1+b3
11 = b0-b2
https://www.youtube.com/watch?v=NZqRUH1uSlE
vývoj kvantového systému v čase
.
Pri modelovaní kvantového počítača potrebujeme vedieť amplitúdy všetkých možných stavov qubitov.
Počítač s N qubitmi teda reprezentuje vektor s 2^N komplexnými číslami.
Pri vektore nie je podstatné poradie čísel, je to skôr mapa z P(B) do C.
Tradične je poradie stavov pre jeden qubit ["q0=0", "q0=1"], pre dva qubity ["q0=0 q1=0", "q0=0 q1=1", "q0=1 q1=0", "q0=1 q1=1"] čiže [|00> |01> |10> |11>], atď.
[1 0] = |0> = qubit je (klasicky) vypnutý
[0 1] = |1> = qubit je (klasicky) zapnutý
[a b] = a|0> + b|1> = qubit je v superpozícii; "a" a "b" sú komplexné čísla; "|a|^2 + |b|^2 = 1"
Vektor "ket" je zvislý.
Vektor "bra" je vodorovný a komplexné hodnoty majú otočené znamienko pri imaginárnej časti; čiže "<x| = |x>†".
Kedže "x × x* = |x|^2", tak "<x|x> = <x| × |x> = | |x> |^2".
Skrátené zápisy
[√½ √½] = |+>
[√½ -√½] = |->
Fyzickú operáciu s qubitmi reprezentuje štvorcová matica komplexných čísel, mapa z P(B)×P(B) do C.
× [p]
[q]
[a b] [ap+bq]
[c d] [cp+dq]
Intuitívne, stĺpec v matici je východiskový stav, riadok v matici je cieľový stav.
Ak aplikujeme viac operácií, napríklad najprv A, potom B, nakoniec C, výsledok je: C(B(Ax)) = CBAx
Ak je prvý qubit [a b] a druhý [c d], spolu sú [ac ad bc bd].
Čiže ak máme stav [a b c d], kde ad = bc, sú to dva nepreviazané qubity.
Matica [[a b][c d]] aplikovaná na prvý alebo druhý z dvoch qubitov:
[a 0 b 0] [a b 0 0]
[0 a 0 b] [c d 0 0]
[c 0 d 0] [0 0 a b]
[0 c 0 d] [0 0 c d]
aplikovaná na prvý, druhý, alebo tretí z troch qubitov:
[a 0 0 0 b 0 0 0] [a 0 b 0 0 0 0 0] [a b 0 0 0 0 0 0]
[0 a 0 0 0 b 0 0] [0 a 0 b 0 0 0 0] [c d 0 0 0 0 0 0]
[0 0 a 0 0 0 b 0] [c 0 d 0 0 0 0 0] [0 0 a b 0 0 0 0]
[0 0 0 a 0 0 0 b] [0 c 0 d 0 0 0 0] [0 0 c d 0 0 0 0]
[c 0 0 0 d 0 0 0] [0 0 0 0 a 0 b 0] [0 0 0 0 a b 0 0]
[0 c 0 0 0 d 0 0] [0 0 0 0 0 a 0 b] [0 0 0 0 c d 0 0]
[0 0 c 0 0 0 d 0] [0 0 0 0 c 0 d 0] [0 0 0 0 0 0 a b]
[0 0 0 c 0 0 0 d] [0 0 0 0 0 c 0 d] [0 0 0 0 0 0 c d]
Matica [[a b c d][e f g h][i j k l][m n o p]] aplikovaná v opačnom poradí:
[...
.
X[p q] = [q p]
X[1 0] = [0 1] čiže X|0> = |1>
X[0 1] = [1 0] čiže X|1> = |0>
Y[p q] = [-qi pi]
Y[1 0] = [0 i] čiže Y|0> = i|1>
Y[0 1] = [-i 0] čiže Y|1> = -i|0>
Z[p q] = [p -q]
Z[1 0] = [1 0] čiže Y|0> = |0>
Z[0 1] = [0 -1] čiže Y|1> = -|1>
H[p q] = [p+q p-q]÷√2
H[1 0] = [1 1]÷√2 čiže H|0> = √½|0> + √½|1>
H[0 1] = [1 -1]÷√2 čiže H|0> = √½|0> - √½|1>
XX = I
YY = I
ZZ = I
HH = I
|H[p q]|^2 = |√½[p+q p-q]|^2 = ½((p+q)^2 + (p-q))^2) = ½(pp + 2pq + qq + pp - 2pq + qq) = pp + qq
.
H = [1 1]
[1 -1]÷√2
[√½ 0 √½ 0] [√½ √½ 0 0]
[ 0 √½ 0 √½] [√½ -√½ 0 0]
[√½ 0 -√½ 0] [ 0 0 √½ √½]
[ 0 √½ 0 -√½] [ 0 0 √½ -√½]
.
X = [0 1]
[1 0]
[0 0 1 0] [0 1 0 0]
[0 0 0 1] [1 0 0 0]
[1 0 0 0] [0 0 0 1]
[0 1 0 0] [0 0 1 0]
.
Y = [0 -i]
[i 0]
.
Z
[1 0]
[0 -1]
[1 0 0 0] [1 0 0 0]
[0 1 0 0] [0 -1 0 0]
[0 0 -1 0] [0 0 1 0]
[0 0 0 -1] [0 0 0 -1]
.
CNOT - CN, NC
[1 0 0 0] [1 0 0 0]
[0 1 0 0] [0 0 0 1]
[0 0 0 1] [0 0 1 0]
[0 0 1 0] [0 1 0 0]
Toffoli
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 1 0]
.
Superhusté kódovanie
https://www.youtube.com/watch?v=w5rCn593Dig
Vytvoríme dva previazané qubity, jeden pošleme Alici, druhý Bobovi
0--[H]--[C]-
0-------[N]-
[1] [√½] [√½]
[0] [ 0] [ 0]
[0] [√½] [ 0]
[0] [ 0] [√½]
Alica má dva klasické bity, a podľa ich hodnoty urobí so svojím qubitom nasledujúcu operáciu: 00 = I, 01 = X, 10 = Z, 11 = XZ (najprv Z, potom X), výsledok pošle Bobovi
00 01 10 11
[√½] [ 0] [ √½] [ 0]
[ 0] [√½] [ 0] [-√½]
[ 0] [√½] [ 0] [ √½]
[√½] [ 0] [-√½] [ 0]
Bob má dva qubity 00+11, 10+01, 00-11, 10-01 (všetky štyri možnosti sú na seba kolmé), revertne pôvodné previazanie, a odmeria ich.
[C]--[H]
[N]-----
[√½] [√½] [1] = 00
[ 0] [ 0] [0]
[ 0] [√½] [0]
[√½] [ 0] [0]
[ 0] [ 0] [0]
[√½] [√½] [1] = 01
[√½] [ 0] [0]
[ 0] [√½] [0]
[ √½] [ √½] [0]
[ 0] [ 0] [0]
[ 0] [-√½] [1] = 10
[-√½] [ 0] [0]
[ 0] [ 0] [ 0]
[-√½] [-√½] [ 0]
[ √½] [ 0] [ 0]
[ 0] [ √½] [-1] = 11
.
Alica má tajný qubit [a b].
Vytvoríme dva previazané qubity [√½ 0 0 √½], jeden pošleme Alici, druhý Bobovi
[a√½ 0 0 a√½ b√½ 0 0 b√½] = a×000 + a×011 + b×100 + b×111
see: https://www.youtube.com/watch?v=3wZ35c3oYUE
CNOT zo source qubitu na previazaný, Hadamard na source qubit
odmeriame previazaný qubit; ak je 1, povieme adresátovi, nech na svojom qubite spraví X
odmeriame source qubit; ak je 1, povieme adresátovi, nech na svojom qubite spraví Z
teraz je adresátov qubit v rovnakom stave, ako bol source qubit na začiatku
aj keby niekto odpočúal poslané informácie, nič mu to nepovie
c/eJxM0sFuozoUxvGngV0jcwwkLFjklnAHFIjaEALdIGMbajCQgmkLTz-iGmlmaf31_eTFoUTxehgXVw616HXmIrvkBHTuGrZj2HvkwF7nHRGyqHnPR6I4K4j6W00HsP7uVnvbskpmItPBtu3sjQoTwNTYHyoOJiK6cAEBRgcDGYAtwDu8q1iFqoo5FbG4eTD2u49BtYDrQTNRVz-pb2M3zeWkCG13dOh06b4r9Zg0fNTA18D_N25PUfdPotfA__mvBj4duofkimvYV0PLew17fAkNCumSgWyDZljiJLfipl6i65egkK4U5GfZ_jQRZ2H2uoZtjlJ5hfR-vzGZSydI5H9vl9urxeTr_xdfdkkaiPNz-KDPgR00JytazCX2bnPsHedLkm-tK3FY0V-p2Nw8ixHt_CkHp33L3tHb3fzZ59mLuDQnuCQniNejFTXRFHSpublRkltRkuPYuy3R8iVIFq-btZnn5LjtV3YPxEWEK7mz-XyXc9Cj3Xq1X4qqpl14PZ-LYxQ2eyos7H0MHjNfkshJAnzCydhgpIE9ciZGTpWGPQ0s8PXHXBZ06Lq5F2opeE9KyZmrxplvSQpKlBj6QjD34BiA9NH9FFKQTjNROY-7qdWnuWRDR0TvkkmNRNKB8W_Fe139Obl54uMGgGU79gGM3wEAAP__quXX_AZZ
.
Motivácia:
- každý mnohočlen N-tého stupňa má N koreňov
- 2D súradnice
- https://en.wikipedia.org/wiki/Cubic_equation#Cardano's_formula
- https://en.wikipedia.org/wiki/Steiner_inellipse
Definujme i ako i*i=-1 a predpokladajme, že platie bežné pravidlá matematiky.
Nemôžeme sčítať hrušky s jablkami, preto sa a+bi nedá ďalej zjednodušiť.
a+bi + c+di = (a+c)+(b+d)i
a+bi - c-di = (a-c)+(b-d)i
a+bi * c+di = ac + adi + bci + bdii = (ac+bd)+(ad+bc)i
a+bi / c+di = (a+bi)(c-di) / (c+di)(c-di) = (ac+bd)+(bc-ad)i / cc+dd = (ac+bd)/(cc+dd)+(bc-ad)/(cc+dd)i
1 / a+bi = a/(aa+bb) - b/(aa+bb)i
geometrická interpretácia: zoom a otočenie - násobenie 2, delenie 2, násobenie i, delenie i = násobenie -i
absolútna hodnota |a+bi| = sqrt(aa+bb), |cis(u)| = 1, a+bi = r*cis(u) # u je nejednoznačné na pridanie násobku 360
r*cis(u) * s*cis(v) = (r*s)*cis(u+v)
r*cis(u) / s*cis(v) = (r/s)*cis(u-v)
mimochodom, aj -i je odmocnina z -1; a celkovo každé číslo má dve druhé odmocniny
sqrt(r*cis(u)) = sqrt(r)*cis(u/2) alebo sqrt(r)*cis(pi + u/2)
sqrt(i) = cis(45) = +-sqrt(1/2)+-sqrt(1/2)i
skúška správnosti: (+-sqrt(1/2)+-sqrt(1/2)i)^2 = 1/2 -1/2 +2*1/2i = i
každé číslo má tri tretie odmocniny
sqrt(1) = 1 alebo +-cis(120) = -1/2 +-sqrt(3/4)i
skúška správnosti: (-1/2 +- sqrt(3/4)i)^3 = (1/4 - 3/4 -+sqrt(3/4)i) * (-1/2 +- sqrt(3/4)i) = 1/4 -+sqrt(3/4)/2i +-sqrt(3/4)/2i +3/4 = 1
vizualizácia: kladné čísla zelené, záporné červené, i modré, -i žlté; osi čierne
https://en.wikipedia.org/wiki/Domain_coloring
vizualizácia kvadratickej rovnice s 2 reálnymi, 1 reálnym, 2 komplexnými koreňmi
umocňovanie na iné ako celé číslo nie je jednoznačne definované, keďže už odmocniny (mocniny na 1/N) sú nejednoznačné
reálna mocnina ako limita racionálnych mocnín... môžeme povedať akurát jej absolútnu hodnotu
čo by to znamenalo "umocniť niečo na i"? pomôže nám Taylorov rad:
e^x = x^0/0! + x^1/1! + x^2/2! ...
cos(x) = 1 - x^2/2! + x^4/4! ...
sin(x) = x^1/1! - x^3/3! + x^5/5! ...
z čoho by vyplývalo e^ix=cis(x)
ln(r*cis(u)) = ln(r)+ui # nejednoznačné, lebo k u možno pridať násobky 360
ln(-1)=180i ale aj -180i
Taylorov rad pre ln(1) diverguje ak |x-1|>1
ln(x) = (x-1)^1/1 - (x-1)^2/2 + (x-1)^3/3 ...
a ešte aj keď konverguje, je citlivý na preusporiadanie prvkov
ln(1+i) = i - i^2/2 + i^3/3 ... = i + 1/2 - i/3 - 1/4 ... = (1/2 - 1/4 + 1/6 ...) + (1 - 1/3 + 1/5 ...)i
a^x = e^ln(a)*x
ak a je kladné reálne, je to jednoznačné, ale inak nie
Ak berieme aj celé komplexné čísla ako celé čísla, zmení sa nám definícia prvočísla, lebo napríklad 2 = (1+i)(1-i), 5 = (2+i)(2-i)
Násobenie zachováva absolútne hodnoty, takže stačí skúšať delitele s absolútnou hodnotou menšou ako odmocnina absolútnej hodnoty N
Súčin dvoch celých komplexných čísel je prirodzené číslo iba ak je to (a+bi)(a-bi)=aa+bb; keďže modulo 4 aa aj bb sú {0,1}, prvočísla dávajúce zvyšok 3 po delení
Neviem to dokázať, ale komplexné prvočísla sú buď typu 4k+3 alebo a+bi kde aa+bb je prvočíslo nie typu 4k+3.
.
.